一些有意思的極限問題


問題1. 給定\(\delta>0\),定義函數\(f: (-\delta,\delta)\backslash \{0\}\rightarrow \mathbb{R}\),它滿足

\[\lim_{x\to 0}\Big(f(x)+\frac{1}{|f(x)|}\Big)=0. \]

求證:\(\lim_{x\to 0}f(x)\)存在,且值為\(-1\).

證明. 定義\(B_r:=(-r,r)\backslash \{0\},\forall r>0\),且

\[g(x):=f(x)+\frac{1}{|f(x)|},\ \forall x\in B_{\delta}. \]

假設\(\color{blue}{\forall r>0,\exists a\in B_r,f(a)>0}\),則

\[g(a)=|f(a)|+\frac{1}{|f(a)|}\geqslant 2. \]

這與\(\lim g(x)=0\)矛盾!

因此,\(\color{blue}{\exists r>0,\forall x\in B_r,f(x)\leqslant 0.}\)

\(x\in B_r\)時,根據\(g\)的定義,解得

\[0\geqslant f(x)=\frac{g(x)-\sqrt{g(x)^2+4}}{2}. \]

\(g(x)\to 0\)\(\frac{x-\sqrt{x^2+4}}{2}\)的連續性,有\(f(x)\to 1\).\(\qquad\vartriangleleft\)

\(\color{red}{注:}\)這種將\(f(x)\)反解出來用\(g(x)\)表示的方法很少見,但往往很有效. 比如謝惠民《數學分析習題課講義》第二版(上冊)的一個題目:



問題2.\(f(x)\)在0處連續,且

\[f(x)-f(\sin x)\thicksim Ax^3,\ x\to 0. \]

其中\(A\)是常數. 求證:\(f'(0)=6A\).

證明.\(g(x)=f(x)-6Ax\),則有

\[g(x)-g(\sin x)=o\left(x^3\right),\ x\to 0 \]

\(g(0)=0\). 由於

\[\underset{x\to 0}{\lim}\frac{\sin 2x-\frac{2x}{\sqrt{1+x^2}}}{x^3}=-\frac{1}{3}, \]

所以,\(\exists \eta \in(0,1)\)使\(0<|x|<\eta\)時,

\[x^{-3}\Big(\sin 2x-\frac{2x}{\sqrt{1+x^2}}\Big)<0. \]

故當\(\frac{1}{\sqrt{n}}<\eta\)時,成立

\[\begin{align} \sin \frac{2}{\sqrt{n}}<\frac{\frac{2}{\sqrt{n}}}{1+\frac{1}{n}}=\frac{2}{\sqrt{n+1}}. \end{align}\]

由連續性,對\(\forall \varepsilon>0\),存在\(\delta\in \left(0,\frac{\pi}{2}\right)\),使得

\[\left|g(x)-g(\sin x)\right|\leqslant \varepsilon \left|x\right|^3,\ \forall |x|\in (0,\delta). \]

\(a_0(x)=x,a_{n+1}(x)=\sin\left(a_n(x)\right)\),並取\(k\in \mathbb{Z}\)使\(1+\frac{1}{x^2}\leqslant k\leqslant \frac{4}{x^2}\),則利用\((1)\)式歸納得

\[|a_n(x)|=a_n(|x|)\leqslant \frac{2}{\sqrt{k+n}},\quad n=0,1,2,\cdots. \]

於是,當\(0<|x|<\delta\)時,

\[\begin{align*} |g(x)|& \leqslant \sum_{n=0}^{\infty}{\left|g(a_n(x))-g(a_{n+1}(x))\right|}\leqslant \varepsilon \sum_{n=0}^{\infty}{\left|a_n(x)\right|^3}\\ & \leqslant \varepsilon \sum_{n=0}^{\infty}{\frac{8}{\left(k+n\right)^{\frac{3}{2}}}}\leqslant \varepsilon \int_{k-1}^{\infty}{\frac{8}{t^{\frac{3}{2}}}\text{d}t}\\ & =\frac{16\varepsilon}{\sqrt{k-1}}\leqslant 16\varepsilon|x|. \end{align*}\]

\(g'(0)\)的定義,\(g'(0)=0\),即

\[f'(0)=g'(0)+6A=6A. \]

證畢!\(\qquad\vartriangleleft\)



問題3.\(A>0\),並定義數列\(\{x_n\}_{n=1}^{\infty}\)如下:

\[x_1>0,\ x_{n+1}=\frac{x_n\big(x_n^2+3A\big)}{3x_n^2+A}. \]

求證:\(\lim_{n\to \infty}x_n=\sqrt{A}\).

證明1. 簡單的計算可以得到

\[\begin{align*} & x_{n+1}-x_n=\frac{2x_n\big(A-x_n^2\big)}{3x_n^2+A},\\ & x_{n+1}-\sqrt{A}=\frac{\big(x_n-\sqrt{A}\big)^3}{3x_n^2+A}. \end{align*}\]

\(x_n\geqslant \sqrt{A}\),根據上式,有\(\sqrt{A}\leqslant x_{n+1}\leqslant x_n\).

\(x_n<\sqrt{A}\),根據上式,有\(x_n<x_{n+1}<\sqrt{A}\).

綜上所述,\(\{x_n\}\)單調且有正的上下界,從而收斂.

\(x_n\to x\),則\(x=\frac{x^3+3Ax}{3x^2+A}\),解得\(x=\sqrt{A}\).\(\qquad\vartriangleleft\)


證明2.\(f(x)=\frac{x^3+3Ax}{3x^2+A}(x>0,A>0)\),則

\[f'(x)=3\Big(\frac{x^2-A}{3x^2+A}\Big)^2\geqslant 0. \]

因此,\(f(x)\)是嚴格單調函數,且\(f(\sqrt{A})=\sqrt{A}\).

\(x_1\geqslant \sqrt{A}\)時,若\(x_n\geqslant \sqrt{A}\),則

\[x_{n+1}=f(x_n)\geqslant f(\sqrt{A})=\sqrt{A}. \]

依此可歸納得\(\forall n\in \mathbb{N}^*,\ x_n\geqslant \sqrt{A}\).

由於

\[\frac{x_{n+1}}{x_n}=\frac{x_n^2+3A}{3x_n^2+A}=\frac{1}{3}+\frac{8A}{9x_n^2+3A} \]

是關於\(x_n\)的減函數,所以

\[\frac{x_{n+1}}{x_n}\leqslant \frac{\big(\sqrt{A}\big)^2+3A}{3\big(\sqrt{A}\big)^2+A}=1. \]

\(\{x_n\}\)遞減且有正的下界,從而收斂.

\(x_1<\sqrt{A}\)時,同理可知\(\{x_n\}\)收斂.

\(x_n\to x\),則\(x=\frac{x^3+3Ax}{3x^2+A}\),解得\(x=\sqrt{A}\).\(\qquad\vartriangleleft\)



問題4.\(\{a_n\}\)為正數列,求證:

\[\varlimsup_{n\to \infty}\frac{a_1+a_2+\cdots+a_n+a_{n+1}}{a_n}\geqslant 4. \]

其中\(4\)是最優下界.

證明.\(S_n=\sum_{k=1}^n a_k,\ \lambda_n=\frac{S_{n-1}}{a_n}\),則\(\lambda_n>0\),且

\[\begin{align*} \frac{S_{n+1}}{a_n}& =\frac{S_n}{a_n}\cdot \frac{S_{n+1}}{S_n}=\Big(1+\frac{S_{n-1}}{a_n}\Big)\Big(1+\frac{a_{n+1}}{S_n}\Big)\\ & =\big(1+\lambda_n \big)\Big(1+\frac{1}{\lambda_{n+1}}\Big). \end{align*}\]

\(\varlimsup\limits_{n\to\infty}\lambda_n=0\)\(+\infty\),均有\(\varlimsup\limits_{n\to\infty}\frac{S_{n+1}}{a_n}=+\infty\).

\(\varlimsup\limits_{n\to\infty}\lambda_n=c\in (0,+\infty)\),則

\[\begin{align*} s& :=\varlimsup_{n\to\infty}\frac{S_{n+1}}{a_n}=\varlimsup_{n\to\infty}\big(1+\lambda_n \big)\Big(1+\frac{1}{\lambda_{n+1}}\Big)\\ & \geqslant \varlimsup_{n\to\infty}\big(1+\lambda_n \big)\cdot \varliminf_{n\to\infty}\Big(1+\frac{1}{\lambda_{n+1}}\Big)\\ & =\big(1+\varlimsup_{n\to\infty}\lambda_n \big)\left(1+\frac{1}{\varlimsup\limits_{n\to\infty}\lambda_{n+1}}\right)\\ & =(1+c)\Big(1+\frac{1}{c}\Big)\geqslant 4. \end{align*}\]

綜上所述,\(\varlimsup\limits_{n\to\infty}\frac{S_{n+1}}{a_n}\geqslant 4\). 最優性則取\(a_n=2^n\).\(\qquad\vartriangleleft\)



問題5. 設正數列\(\{a_n\}\)滿足

\[a_{n+2}=2+\frac{1}{a_{n+1}^2}+\frac{1}{a_n^2},\ n\geqslant 1. \]

求證數列收斂,並求極限.


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM