一些有意思的极限问题


问题1. 给定\(\delta>0\),定义函数\(f: (-\delta,\delta)\backslash \{0\}\rightarrow \mathbb{R}\),它满足

\[\lim_{x\to 0}\Big(f(x)+\frac{1}{|f(x)|}\Big)=0. \]

求证:\(\lim_{x\to 0}f(x)\)存在,且值为\(-1\).

证明. 定义\(B_r:=(-r,r)\backslash \{0\},\forall r>0\),且

\[g(x):=f(x)+\frac{1}{|f(x)|},\ \forall x\in B_{\delta}. \]

假设\(\color{blue}{\forall r>0,\exists a\in B_r,f(a)>0}\),则

\[g(a)=|f(a)|+\frac{1}{|f(a)|}\geqslant 2. \]

这与\(\lim g(x)=0\)矛盾!

因此,\(\color{blue}{\exists r>0,\forall x\in B_r,f(x)\leqslant 0.}\)

\(x\in B_r\)时,根据\(g\)的定义,解得

\[0\geqslant f(x)=\frac{g(x)-\sqrt{g(x)^2+4}}{2}. \]

\(g(x)\to 0\)\(\frac{x-\sqrt{x^2+4}}{2}\)的连续性,有\(f(x)\to 1\).\(\qquad\vartriangleleft\)

\(\color{red}{注:}\)这种将\(f(x)\)反解出来用\(g(x)\)表示的方法很少见,但往往很有效. 比如谢惠民《数学分析习题课讲义》第二版(上册)的一个题目:



问题2.\(f(x)\)在0处连续,且

\[f(x)-f(\sin x)\thicksim Ax^3,\ x\to 0. \]

其中\(A\)是常数. 求证:\(f'(0)=6A\).

证明.\(g(x)=f(x)-6Ax\),则有

\[g(x)-g(\sin x)=o\left(x^3\right),\ x\to 0 \]

\(g(0)=0\). 由于

\[\underset{x\to 0}{\lim}\frac{\sin 2x-\frac{2x}{\sqrt{1+x^2}}}{x^3}=-\frac{1}{3}, \]

所以,\(\exists \eta \in(0,1)\)使\(0<|x|<\eta\)时,

\[x^{-3}\Big(\sin 2x-\frac{2x}{\sqrt{1+x^2}}\Big)<0. \]

故当\(\frac{1}{\sqrt{n}}<\eta\)时,成立

\[\begin{align} \sin \frac{2}{\sqrt{n}}<\frac{\frac{2}{\sqrt{n}}}{1+\frac{1}{n}}=\frac{2}{\sqrt{n+1}}. \end{align}\]

由连续性,对\(\forall \varepsilon>0\),存在\(\delta\in \left(0,\frac{\pi}{2}\right)\),使得

\[\left|g(x)-g(\sin x)\right|\leqslant \varepsilon \left|x\right|^3,\ \forall |x|\in (0,\delta). \]

\(a_0(x)=x,a_{n+1}(x)=\sin\left(a_n(x)\right)\),并取\(k\in \mathbb{Z}\)使\(1+\frac{1}{x^2}\leqslant k\leqslant \frac{4}{x^2}\),则利用\((1)\)式归纳得

\[|a_n(x)|=a_n(|x|)\leqslant \frac{2}{\sqrt{k+n}},\quad n=0,1,2,\cdots. \]

于是,当\(0<|x|<\delta\)时,

\[\begin{align*} |g(x)|& \leqslant \sum_{n=0}^{\infty}{\left|g(a_n(x))-g(a_{n+1}(x))\right|}\leqslant \varepsilon \sum_{n=0}^{\infty}{\left|a_n(x)\right|^3}\\ & \leqslant \varepsilon \sum_{n=0}^{\infty}{\frac{8}{\left(k+n\right)^{\frac{3}{2}}}}\leqslant \varepsilon \int_{k-1}^{\infty}{\frac{8}{t^{\frac{3}{2}}}\text{d}t}\\ & =\frac{16\varepsilon}{\sqrt{k-1}}\leqslant 16\varepsilon|x|. \end{align*}\]

\(g'(0)\)的定义,\(g'(0)=0\),即

\[f'(0)=g'(0)+6A=6A. \]

证毕!\(\qquad\vartriangleleft\)



问题3.\(A>0\),并定义数列\(\{x_n\}_{n=1}^{\infty}\)如下:

\[x_1>0,\ x_{n+1}=\frac{x_n\big(x_n^2+3A\big)}{3x_n^2+A}. \]

求证:\(\lim_{n\to \infty}x_n=\sqrt{A}\).

证明1. 简单的计算可以得到

\[\begin{align*} & x_{n+1}-x_n=\frac{2x_n\big(A-x_n^2\big)}{3x_n^2+A},\\ & x_{n+1}-\sqrt{A}=\frac{\big(x_n-\sqrt{A}\big)^3}{3x_n^2+A}. \end{align*}\]

\(x_n\geqslant \sqrt{A}\),根据上式,有\(\sqrt{A}\leqslant x_{n+1}\leqslant x_n\).

\(x_n<\sqrt{A}\),根据上式,有\(x_n<x_{n+1}<\sqrt{A}\).

综上所述,\(\{x_n\}\)单调且有正的上下界,从而收敛.

\(x_n\to x\),则\(x=\frac{x^3+3Ax}{3x^2+A}\),解得\(x=\sqrt{A}\).\(\qquad\vartriangleleft\)


证明2.\(f(x)=\frac{x^3+3Ax}{3x^2+A}(x>0,A>0)\),则

\[f'(x)=3\Big(\frac{x^2-A}{3x^2+A}\Big)^2\geqslant 0. \]

因此,\(f(x)\)是严格单调函数,且\(f(\sqrt{A})=\sqrt{A}\).

\(x_1\geqslant \sqrt{A}\)时,若\(x_n\geqslant \sqrt{A}\),则

\[x_{n+1}=f(x_n)\geqslant f(\sqrt{A})=\sqrt{A}. \]

依此可归纳得\(\forall n\in \mathbb{N}^*,\ x_n\geqslant \sqrt{A}\).

由于

\[\frac{x_{n+1}}{x_n}=\frac{x_n^2+3A}{3x_n^2+A}=\frac{1}{3}+\frac{8A}{9x_n^2+3A} \]

是关于\(x_n\)的减函数,所以

\[\frac{x_{n+1}}{x_n}\leqslant \frac{\big(\sqrt{A}\big)^2+3A}{3\big(\sqrt{A}\big)^2+A}=1. \]

\(\{x_n\}\)递减且有正的下界,从而收敛.

\(x_1<\sqrt{A}\)时,同理可知\(\{x_n\}\)收敛.

\(x_n\to x\),则\(x=\frac{x^3+3Ax}{3x^2+A}\),解得\(x=\sqrt{A}\).\(\qquad\vartriangleleft\)



问题4.\(\{a_n\}\)为正数列,求证:

\[\varlimsup_{n\to \infty}\frac{a_1+a_2+\cdots+a_n+a_{n+1}}{a_n}\geqslant 4. \]

其中\(4\)是最优下界.

证明.\(S_n=\sum_{k=1}^n a_k,\ \lambda_n=\frac{S_{n-1}}{a_n}\),则\(\lambda_n>0\),且

\[\begin{align*} \frac{S_{n+1}}{a_n}& =\frac{S_n}{a_n}\cdot \frac{S_{n+1}}{S_n}=\Big(1+\frac{S_{n-1}}{a_n}\Big)\Big(1+\frac{a_{n+1}}{S_n}\Big)\\ & =\big(1+\lambda_n \big)\Big(1+\frac{1}{\lambda_{n+1}}\Big). \end{align*}\]

\(\varlimsup\limits_{n\to\infty}\lambda_n=0\)\(+\infty\),均有\(\varlimsup\limits_{n\to\infty}\frac{S_{n+1}}{a_n}=+\infty\).

\(\varlimsup\limits_{n\to\infty}\lambda_n=c\in (0,+\infty)\),则

\[\begin{align*} s& :=\varlimsup_{n\to\infty}\frac{S_{n+1}}{a_n}=\varlimsup_{n\to\infty}\big(1+\lambda_n \big)\Big(1+\frac{1}{\lambda_{n+1}}\Big)\\ & \geqslant \varlimsup_{n\to\infty}\big(1+\lambda_n \big)\cdot \varliminf_{n\to\infty}\Big(1+\frac{1}{\lambda_{n+1}}\Big)\\ & =\big(1+\varlimsup_{n\to\infty}\lambda_n \big)\left(1+\frac{1}{\varlimsup\limits_{n\to\infty}\lambda_{n+1}}\right)\\ & =(1+c)\Big(1+\frac{1}{c}\Big)\geqslant 4. \end{align*}\]

综上所述,\(\varlimsup\limits_{n\to\infty}\frac{S_{n+1}}{a_n}\geqslant 4\). 最优性则取\(a_n=2^n\).\(\qquad\vartriangleleft\)



问题5. 设正数列\(\{a_n\}\)满足

\[a_{n+2}=2+\frac{1}{a_{n+1}^2}+\frac{1}{a_n^2},\ n\geqslant 1. \]

求证数列收敛,并求极限.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM