Given an array arr
of positive integers sorted in a strictly increasing order, and an integer k
.
Find the kth
positive integer that is missing from this array.
Example 1:
Input: arr = [2,3,4,7,11], k = 5 Output: 9 Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...].
The 5th missing positive integer is 9.
Example 2:
Input: arr = [1,2,3,4], k = 2 Output: 6 Explanation: The missing positive integers are [5,6,7,...].
The 2nd missing positive integer is 6.
Constraints:
1 <= arr.length <= 1000
1 <= arr[i] <= 1000
1 <= k <= 1000
arr[i] < arr[j]
for1 <= i < j <= arr.length
第K個缺失的正整數。
題意是給一個升序的數組和一個數字K,請返回第K個缺失的正整數。這道題和1060題是一模一樣,但是這道題是easy的原因在於數據范圍很小,nums[i] 只到1000。
這道題有好幾種解法,我這里都列出來。分別是暴力解,線性解和二分法。
首先是暴力解,用一個指針掃描input數組,去看每一個位置上的數字是否是要找的數字target。一開始target = 1,意思是從1開始找,如果能在input數組中找到每個正整數,則接着往后遍歷;但凡有一個正整數找不到,就把這個缺失的正整數加到一個list中,直到這個list的size達到K。但是也有可能list沒有到K,input數組就遍歷完了,此時可以把缺失的整數用一個while循環模擬完。
時間O(n)
空間O(n)
Java實現
1 class Solution { 2 public int findKthPositive(int[] arr, int k) { 3 int target = 1; 4 int i = 0; 5 List<Integer> missingOnes = new ArrayList<>(); 6 while (i < arr.length) { 7 // if the target number is found 8 if (arr[i] == target) { 9 i++; 10 target++; 11 } 12 // if it's not found 13 else { 14 missingOnes.add(target); 15 target++; 16 } 17 } 18 int size = missingOnes.size(); 19 int count = size; 20 int lastNumber = (missingOnes.size() == 0) ? arr[arr.length - 1] 21 : Math.max(arr[arr.length - 1], missingOnes.get(missingOnes.size() - 1)); 22 if (count >= k) { 23 return missingOnes.get(k - 1); 24 } else { 25 while (count < k) { 26 lastNumber++; 27 count++; 28 } 29 return lastNumber; 30 } 31 } 32 }
一個比較優化的線性解法是,因為題目給的是一個升序的正整數數組,而且數組理論上是從1開始。所以理想情況下,數字nums[i]和它對應的下標i的關系應該是nums[i] = i + 1。所以在掃描input數組的時候,如果發覺數字和他對應的下標的差大於1了,則說明中間開始缺失數字了。當這個差距大於等於K的時候,則找到了第K個缺失的數字。
時間O(n)
空間O(1)
Java實現
1 class Solution { 2 public int findKthPositive(int[] arr, int k) { 3 int len = arr.length; 4 for (int i = 0; i < len; i++) { 5 if (arr[i] - i - 1 >= k) { 6 return k + i; 7 } 8 } 9 return k + len; 10 } 11 }
二分法。因為input數組是有序的,所以如果面試官不滿意O(n)級別的思路的話,可以試圖往二分法上靠。mid找到中點,還是跟第二種做法類似,比較當前這個index上的數字和index的差值。如果差值小於K,則往數組的右半邊找;反之則往數組的左半邊找。
時間O(logn)
空間O(1)
Java實現一,right 指針一開始在數組范圍外
1 class Solution { 2 public int findKthPositive(int[] arr, int k) { 3 int left = 0; 4 int right = arr.length; 5 int mid = 0; 6 while (left < right) { 7 mid = left + (right - left) / 2; 8 if (arr[mid] - mid >= k + 1) { 9 right = mid; 10 } else { 11 left = mid + 1; 12 } 13 } 14 return left + k; 15 } 16 }
Java實現二,right 指針一開始在數組范圍內。因為 right = nums.length - 1,mid 指針能碰到的范圍是在 [left, right] 之間,所以當 mid 不滿足判斷條件的時候,left = mid + 1,right = mid - 1。
1 class Solution { 2 public int findKthPositive(int[] arr, int k) { 3 int left = 0; 4 int right = arr.length - 1; 5 while (left <= right) { 6 int mid = left + (right - left) / 2; 7 int missing = arr[mid] - mid - 1; 8 if (missing < k) { 9 left = mid + 1; 10 } else { 11 right = mid - 1; 12 } 13 } 14 return left + k; 15 } 16 }
JavaScript實現一
1 /** 2 * @param {number[]} arr 3 * @param {number} k 4 * @return {number} 5 */ 6 var findKthPositive = function (arr, k) { 7 let start = 0; 8 let end = arr.length - 1; 9 while (start <= end) { 10 let mid = start + Math.floor((end - start) / 2); 11 let missing = arr[mid] - mid - 1; 12 if (missing < k) { 13 start = mid + 1; 14 } else { 15 end = mid - 1; 16 } 17 } 18 return start + k; 19 };
JavaScript實現二
1 /** 2 * @param {number[]} arr 3 * @param {number} k 4 * @return {number} 5 */ 6 var findKthPositive = function (arr, k) { 7 let start = 0; 8 let end = arr.length; 9 while (start < end) { 10 let mid = start + Math.floor((end - start) / 2); 11 let missing = arr[mid] - mid - 1; 12 if (missing < k) { 13 start = mid + 1; 14 } else { 15 end = mid; 16 } 17 } 18 return start + k; 19 };
相關題目
410. Split Array Largest Sum
774. Minimize Max Distance to Gas Station
1011. Capacity To Ship Packages In N Days
1060. Missing Element in Sorted Array
1231. Divide Chocolate
1283. Find the Smallest Divisor Given a Threshold
1482. Minimum Number of Days to Make m Bouquets