from tensorflow.python import pywrap_tensorflow
import tensorflow as tf
from tensorflow.python.framework import graph_util
'''
將節點名字打印出來
'''
def getAllNodes(checkpoint_path):
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
# Print tensor name and values
for key in var_to_shape_map:
print("tensor_name: ", key)
#print(reader.get_tensor(key))
def freeze_graph(ckpt, output_graph):
#輸出節點的名稱,最直觀的是從tensorboard里讀,一般就是最后輸出的節點,例如這里就是輸出accuracy的節點
output_node_names = 'FrameAccuracy/Cast'
# saver = tf.train.import_meta_graph(ckpt+'.meta', clear_devices=True)
saver = tf.compat.v1.train.import_meta_graph(ckpt + '.meta', clear_devices=True)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
saver.restore(sess, ckpt)
output_graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def,
output_node_names=output_node_names.split(',')
)
with tf.gfile.GFile(output_graph, 'wb') as fw:
fw.write(output_graph_def.SerializeToString())
print('{} ops in the final graph.'.format(len(output_graph_def.node)))
'''
把pb文件的節點讀出來
'''
def print_tensors(pb_file):
print('Model File: {}\n'.format(pb_file))
# read pb into graph_def
with tf.gfile.GFile(pb_file, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# import graph_def
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def)
# print operations
for op in graph.get_operations():
print(op.name + '\t' + str(op.values()))
'''
從ckpt中讀取圖結構,輸出可以被tensorboard讀取的圖文件
'''
def showNetFromCkpt(path):
from tensorflow.python.platform import gfile
graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
_ = tf.train.import_meta_graph(path)
#tensorboard的圖文件輸出的位置
#使用tensorboard --logdir=E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\graph 進入tensorboard
summary_write = tf.summary.FileWriter("E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels", graph)
summary_write.close()
if __name__ == '__main__':
#注意這里的path必須是絕對路徑!!
ckpt_path='E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\save_epoch_38\\ViolenceNet.ckpt'
#讀取圖文件,讀完了就注釋了就行,把輸出節點寫到上面的freeze_graph函數里
#showNetFromCkpt(ckpt_path+".meta")
#getAllNodes(ckpt_path)
#將ckpt轉換為pb,這里寫pb的路徑,也必須是絕對路徑
output_graph_path='E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\ViolenceNet.pb'
freeze_graph(ckpt_path,output_graph_path)
#將Pb文件的節點打印出來,看看有沒有問題
print_tensors(output_graph_path)
參考文獻: