按位與(&)其功能是參與運算的兩數各對應的二進制位相與。只有對應的兩個二進制位均為1時,結果位才為1,否則為0 。參與運算的數以補碼方式出現。
1、請實現一個函數,輸入一個正數,輸出該數二進制表示中1的個數。
這里用到了這樣一個知識點:把一個整數減去1,再和原整數做與運算,會把該整數最右邊一個1變成0 。 那么一個整數的二進制表示中有多少個1,就可以進行多少次這樣的操作。
總結:把一個整數減去1之后再和原來的整數做位與運算,得到的結果相當於是把整數的二進制表示中的最右邊一個1變成0 。
2、輸入兩個整數m和n,計算需要改變m的二進制表示中的多少位才能得到n。
解決方法:第一步,求這兩個數的異或;第二步,統計異或結果中1的位數。
3、用一條語句判斷一個整數是不是2的整數次方。
解決方法:一個整數如果是2的整數次方,那么它的二進制表示中有且只有一位是1,而其它所有位都是0 。 根據前面的分析,把這個整數減去1后再和它自己做與運算,這個整數中唯一的1就變成0了。
解答:!(x & (x - 1)