1. 遷移學習的兩個主要場景
- 微調CNN:使用預訓練的網絡來初始化自己的網絡,而不是隨機初始化,然后訓練即可
- 將CNN看成固定的特征提取器:固定前面的層,重寫最后的全連接層,只有這個新的層會被訓練
下面修改預訓練好的resnet18網絡在私人數據集上進行訓練來分類螞蟻和蜜蜂
2. 數據集下載
這里使用的數據集包含ants和bees訓練圖片各約120張,驗證圖片各75張。由於數據樣本非常少,如果從0初始化一個網絡進行訓練很難有令人滿意的結果,這時候遷移學習就派上了用場。數據集下載地址,下載后解壓到項目目錄
3. 導入相關包
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
import torchvision.transforms as transforms
import time
import os
import copy
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
4. 加載數據
PyTorch提供了 torchvision.datasets.ImageFolder 方法來加載私人數據集:
# 訓練數據集需要擴充和歸一化
# 驗證數據集僅需要歸一化
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'hymenoptera_data'
image_datasets = {
x: torchvision.datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'val']
}
dataloaders = {
x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4)
for x in ['train', 'val']
}
dataset_sizes = {
x: len(image_datasets[x])
for x in ['train', 'val']
}
class_names = image_datasets['train'].classes
5. 定義一個通用的訓練函數,得到最優參數
# 訓練模型函數,參數scheduler是一個 torch.optim.lr_scheduler 學習速率調整類對象
def train_model(model, criterion, optimizer, scheduler, num_epochs=2):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('-' * 20)
print('Epoch {}/{}'.format(epoch+1, num_epochs))
# 每個epoch都有一個訓練和驗證階段
for phase in ['train', 'val']:
if phase == 'train':
model.train() # 訓練模式
else:
model.eval() # 驗證模式
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# 訓練階段開啟梯度跟蹤
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 僅在訓練階段進行后向+優化
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# 統計
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# 記錄最好的狀態
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print('-' * 20)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed//60, time_elapsed%60))
print('Best val Acc: {:4f}'.format(best_acc))
# 返回最佳參數的模型
model.load_state_dict(best_model_wts)
return model
6. 場景一:微調CNN
這里我們使用resnet18作為我們的初始網絡,在自己的數據集上繼續訓練預訓練好的模型,所不同的是,我們修改原網絡最后的全連接層輸出維度為2,因為我們只需要預測是螞蟻還是蜜蜂,原網絡輸出維度是1000,預測了1000個類別:
net = torchvision.models.resnet18(pretrained=True) # 加載resnet網絡結構和預訓練參數
num_ftrs = net.fc.in_features # 提取fc層的輸入參數
net.fc = nn.Linear(num_ftrs, 2) # 修改輸出維度為2
net = net.to(device)
# 使用分類交叉熵 Cross-Entropy 作損失函數,動量SGD做優化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 每5個epochs衰減一次學習率 new_lr = old_lr * gamma ^ (epoch/step_size)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# 訓練模型
net = train_model(net, criterion, optimizer, lr_scheduler, num_epochs=10)
7. 場景二:CNN作為固定特征提取器
這里我們通過設置 requires_grad == False 凍結除最后一層之外的所有網絡,這樣在反向傳播的時候他們的梯度就不會被計算,參數也不會更新:
net = torchvision.models.resnet18(pretrained=True)
# 通過設置requires_grad = False來凍結參數,這樣在反向傳播的時候他們的梯度就不會被計算
for param in net.parameters():
param.requires_grad = False
# 新連接層參數默認requires_grad=True
num_ftrs = net.fc.in_features
net.fc = nn.Linear(num_ftrs, 2)
net = net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.fc.parameters(), lr=0.001, momentum=0.9)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
net = train_model(net, criterion, optimizer, lr_scheduler, num_epochs=20)