隱含馬爾可夫模型(Hidden Markov Model,HMM)最初是在20世紀60年代后半期,由Leonard E. Baum和其他一些作者在一系列統計學論文中描述的。其最初應用於語音識別領域。
1980年代后半期,HMM開始應用到生物序列,尤其是DNA序列的分析中。隨后,在生物信息學領域,HMM逐漸成為一項不可或缺的技術。
本文內容包含來自:
[1] 用hmmlearn學習隱馬爾科夫模型HMM
[2] 官方文檔
0. 目錄
目錄
1. hmmlearn
hmmlearn曾經是scikit-learn項目的一部分,現已獨立成單獨的Python包,可直接通過pip進行安裝,為無監督隱馬爾可夫模型。其官方文檔網址為https://hmmlearn.readthedocs.io/en/stable/。其有監督的版本為seqlearn。
pip3 install hmmlearn
hmmlearn提供三種模型:
名稱 | 簡介 | 觀測狀態 |
---|---|---|
hmm.GaussianHMM |
Hidden Markov Model with Gaussian emissions. | 連續 |
hmm.GMMHMM |
Hidden Markov Model with Gaussian mixture emissions. | 連續 |
hmm.MultinomialHMM |
Hidden Markov Model with multinomial (discrete) emissions | 離散 |
2. MultinomialHMM
方法聲明為
class hmmlearn.hmm.MultinomialHMM(n_components=1, startprob_prior=1.0, transmat_prior=1.0,
algorithm='viterbi', random_state=None, n_iter=10, tol=0.01, verbose=False, params='ste', init_params='ste')
其中,較為常用(或將更新)的參數為:
- n_components:(int)隱含狀態個數
- n_iter:(int, optional)訓練時循環(迭代)最大次數
- tol:(float, optional)Convergence threshold. EM will stop if the gain in log-likelihood is below this value.
- verbose:(bool, optional)賦值為
True
時,會向標准輸出輸出每次迭代的概率(score)與本次 - init_params:(string, optional)決定哪些參數會在訓練時被初始化。
‘s’
for startprob,‘t’
for transmat,‘e’
for emissionprob。空字符串""
代表全部使用用戶提供的參數進行訓練。
2.1 定義、使用:
import numpy as np
from hmmlearn import hmm
states = ["box 1", "box 2", "box3"]
n_states = len(states)
observations = ["red", "white"]
n_observations = len(observations)
start_probability = np.array([0.2, 0.4, 0.4])
transition_probability = np.array([
[0.5, 0.2, 0.3],
[0.3, 0.5, 0.2],
[0.2, 0.3, 0.5]
])
emission_probability = np.array([
[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]
])
model = hmm.MultinomialHMM(n_components=n_states, n_iter=20, tol=0.001)
model.startprob_=start_probability
model.transmat_=transition_probability
model.emissionprob_=emission_probability
2.2 維特比算法預測狀態
有說法稱,其返回結果為ln(prob)
,文檔原文為“the log probability”
seen = np.array([[0,1,0]]).T
logprob, box = model.decode(seen, algorithm="viterbi")
print("The ball picked:", ", ".join(map(lambda x: observations[x], seen)))
print("The hidden box", ", ".join(map(lambda x: states[x], box)))
輸出為
('The ball picked:', 'red, white, red')
('The hidden box', 'box3, box3, box3')
2.3 計算觀測的概率
print model.score(seen)
輸出為
-2.03854530992
3. 訓練與數據准備
import numpy as np
from hmmlearn import hmm
states = ["box 1", "box 2", "box3"]
n_states = len(states)
observations = ["red", "white"]
n_observations = len(observations)
model = hmm.MultinomialHMM(n_components=n_states, n_iter=20, tol=0.01)
D1 = [[1], [0], [0], [0], [1], [1], [1]]
D2 = [[1], [0], [0], [0], [1], [1], [1], [0], [1], [1]]
D3 = [[1], [0], [0]]
X = numpy.concatenate([D1, D2, D3])
model.fit(X)
print model.startprob_
print model.transmat_
print model.emissionprob_
print model.score(X)
4.GaussianHMM 參數介紹
http://reader.epubee.com/books/mobile/24/240fbe312d9e3a78b5fe3f238df50e87/text00010.html
原書為《從機器學習到深度學習:基於scikit-learn與TensorFlow的高效開發實戰(劉長龍 著)》