QuantLib 金融計算——C++ 代碼改寫成 Python 程序的一些經驗
概述
Python 在科學計算、數據分析和可視化等方面已經形成了非常強大的生態。而且,作為一門時尚的腳本語言,易學易用。因此,對於量化分析和風險管理的從業者來說,將某些 QuantLib 的歷史代碼轉換成 Python 程序是一件值得嘗試的工作。
Python 本身的面向對象機制非常完善,借助 SWIG 的包裝,由 C++ 代碼轉換而成的 Python 程序基本上可以完整地保留原本的類架構。對於用戶來說,應用層面的歷史代碼幾乎可以平行的進行移植,只需稍加修改即可。
本文將以 QuantLib 官方網站上的 EquityOption.cpp 為例,展示如何將應用層面的 C++ 代碼轉換成 Python 程序,並總結出一般的轉換方法和注意事項。
將 C++ 代碼改寫成 Python 程序
下面,我將逐句把 C++ 代碼改寫成 Python 程序。
C++ 代碼:
#include <ql/qldefines.hpp>
#ifdef BOOST_MSVC
# include <ql/auto_link.hpp>
#endif
#include <ql/instruments/vanillaoption.hpp>
#include <ql/pricingengines/vanilla/binomialengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>
#include <ql/pricingengines/vanilla/baroneadesiwhaleyengine.hpp>
#include <ql/pricingengines/vanilla/bjerksundstenslandengine.hpp>
#include <ql/pricingengines/vanilla/batesengine.hpp>
#include <ql/pricingengines/vanilla/integralengine.hpp>
#include <ql/pricingengines/vanilla/fdblackscholesvanillaengine.hpp>
#include <ql/pricingengines/vanilla/mceuropeanengine.hpp>
#include <ql/pricingengines/vanilla/mcamericanengine.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <iostream>
#include <iomanip>
using namespace QuantLib;
#if defined(QL_ENABLE_SESSIONS)
namespace QuantLib {
Integer sessionId() { return 0; }
}
#endif
Python 代碼:
import QuantLib as ql
import prettytable as pt
首先,引入必要的模塊,對 C++ 來說是一組頭文件。Python 的優勢顯而易見。
C++ 代碼:
// set up dates
Calendar calendar = TARGET();
Date todaysDate(15, May, 1998);
Date settlementDate(17, May, 1998);
Settings::instance().evaluationDate() = todaysDate;
Python 代碼:
# set up dates
calendar = ql.TARGET()
todaysDate = ql.Date(15, ql.May, 1998)
settlementDate = ql.Date(17, ql.May, 1998)
ql.Settings.instance().evaluationDate = todaysDate
C++ 中對象的聲明有兩種常見的方式:
BaseClass object = Class(...)
,其中Class
可以是BaseClass
本身,或者其派生類。示例中的TARGET
正是Calendar
的派生類;Class object(...)
。
Python 中無需聲明對象類型,而是以賦值的形式創建一個對象,所以對於上述兩類格式的代碼,統一改寫成 object = Class(...)
。
經驗 1:對象聲明語句
BaseClass object = Class(...)
和Class object(...)
統一改寫成object = Class(...)
。
Settings
是 QuantLib 中的一個“單體模式”的實現,通常用來為整個程序設置統一的估值日期,幾乎每個應用程序中都會出現。通過調用 Settings
的靜態方法 instance()
,用戶可以修改單體實例的某些屬性,其中 evaluationDate()
方法可以把存儲估值日期的成員變量地址暴露出來,讓用戶進行設置。
不過,Python 中的類沒有 ::
運算符,類的方法也不能暴露成員變量的地址。所以,原本的靜態方法一律通過 .
運算符調用,同時 evaluationDate()
方法被重定義為類的 property
,這就是為什么 Python 語句中 evaluationDate
后面沒有 ()
。注意,instance()
后面的 ()
不能丟。
經驗 2:用來對
Settings::instance()
進行配置的成員函數,例如evaluationDate()
,在 Python 中以類的property
形式出現,不過名稱不變。
C++ 代碼:
// our options
Option::Type type(Option::Put);
Real underlying = 36;
Real strike = 40;
Spread dividendYield = 0.00;
Rate riskFreeRate = 0.06;
Volatility volatility = 0.20;
Date maturity(17, May, 1999);
DayCounter dayCounter = Actual365Fixed();
Python 代碼:
# our options
optType = ql.Option.Put
underlying = 36.0
strike = 40.0
dividendYield = 0.00
riskFreeRate = 0.06
volatility = 0.20
maturity = ql.Date(17, ql.May, 1999)
dayCounter = ql.Actual365Fixed()
C++ 中類內部枚舉類型的對象聲明和類對象聲明相似,采用 Class::Enum object(Class::element)
的形式。枚舉元素本質上是一些整數常量。
SWIG 在包裝 QuantLib 的 Python 接口時會把 C++ 類內部的枚舉類型轉換成 Python 類中的公有屬性,其值依然是一些整數值。所以,枚舉類型對象的聲明就直接改寫成賦值語句。因此,Class::Enum object(Class::element)
語句統一改寫成 object = Class.element
。
示例中的 Type
是 Option
類內部的一個枚舉型,而 Put
是 Type
中的一個元素,另一個是 Call
。因為 type
是 Python 的關鍵字,改寫時一定要重命名。
經驗 3:對於類中的枚舉類型,
Class::Enum object(Class::element)
語句統一改寫成object = Class.element
。
對於基本類型(整數、浮點數、字符、字符串)來說,改寫非常容易。由於 Python 無需聲明類型,Type object = value
語句統一改寫成賦值語句——object = value
。
經驗 4:對於基本類型,
Type object = value
語句統一改寫成object = value
。
C++ 代碼:
std::cout << "Option type = " << type << std::endl;
std::cout << "Maturity = " << maturity << std::endl;
std::cout << "Underlying price = " << underlying << std::endl;
std::cout << "Strike = " << strike << std::endl;
std::cout << "Risk-free interest rate = " << io::rate(riskFreeRate) << std::endl;
std::cout << "Dividend yield = " << io::rate(dividendYield) << std::endl;
std::cout << "Volatility = " << io::volatility(volatility) << std::endl;
std::cout << std::endl;
std::string method;
std::cout << std::endl ;
// write column headings
Size widths[] = { 35, 14, 14, 14 };
std::cout << std::setw(widths[0]) << std::left << "Method"
<< std::setw(widths[1]) << std::left << "European"
<< std::setw(widths[2]) << std::left << "Bermudan"
<< std::setw(widths[3]) << std::left << "American"
<< std::endl;
Python 代碼:
print('Option type =', optType)
print('Maturity =', maturity)
print('Underlying price =', underlying)
print('Strike =', strike)
print('Risk-free interest rate =', '{0:%}'.format(riskFreeRate))
print('Dividend yield =', '{0:%}'.format(dividendYield))
print('Volatility =', '{0:%}'.format(volatility))
print()
# show table
tab = pt.PrettyTable(['Method', 'European', 'Bermudan', 'American'])
字符串輸出部分沒什么好說的,我使用了 prettytable
包來美化輸出結果。
C++ 代碼:
std::vector<Date> exerciseDates;
for (Integer i = 1; i <= 4; i++)
exerciseDates.push_back(settlementDate + 3 * i * Months);
Python 代碼:
exerciseDates = ql.DateVector()
for i in range(1, 5):
exerciseDates.push_back(settlementDate + ql.Period(3 * i, ql.Months))
Python 本身沒有“模板”的概念,因此 SWIG 只能對模板的實例化進行包裝(模板的實例化就是一個具體的類),進而得到一些 Python 類。對於某些常用類型,例如 Date
,QuantLib 的 Python 接口包裝了對應的 std::vector
模板的實例化,包裝后得到的 Python 類有一致的命名格式——ClassVector
,對於 std::vector<Date>
而言就是 DateVector
。
因為模板的實例化實際上就是一個具體的類,因此,這部分代碼的改寫方法遵循經驗 1。
和 C++ 完全不同,Python 不是一個“強類型”的語言,在改寫涉及隱式轉換的代碼時要格外注意。Months
是 QuantLib 中的枚舉類型 TimeUnit
的元素,SWIG 在包裝枚舉類型時會將元素轉換成 Python 中的整數,丟失了 TimeUnit
的類型信息。由於 Python 不是強類型的,被包裝的枚舉類型會丟失類型信息,因此,3 * i * Months
在 C++ 中可以順利地隱式轉換成一個 Period
對象——Period(3 * i, Months)
,但是,在 Python 中 3 * i * Months
只會被當做三個整數相乘。此時,3 * i * Months
必須改寫成顯式聲明的格式——ql.Period(3 * i, ql.Months)
。
經驗 5:隱式轉換成
Period
對象的代碼在改寫時要改成顯式聲明的格式,這類代碼通常與枚舉類型TimeUnit
有關。
C++ 代碼:
ext::shared_ptr<Exercise> europeanExercise(
new EuropeanExercise(maturity));
ext::shared_ptr<Exercise> bermudanExercise(
new BermudanExercise(exerciseDates));
ext::shared_ptr<Exercise> americanExercise(
new AmericanExercise(settlementDate, maturity));
Python 代碼:
europeanExercise = ql.EuropeanExercise(maturity)
bermudanExercise = ql.BermudanExercise(exerciseDates)
americanExercise = ql.AmericanExercise(settlementDate, maturity)
C++ 中聲明智能指針的最常見方式是:shared_ptr<BaseClass> object(new Class(...))
(shared_ptr
也是最常用的智能指針類模板),其中 Class
可以是 BaseClass
本身,或者其派生類。示例中的 EuropeanExercise
正是 Exercise
的派生類。這類代碼在 Python 中統一改寫成聲明對象的形式——object = Class(...)
,因為智能指針通常被視為一個對象。
經驗 6:對於智能指針,
shared_ptr<BaseClass> object(new Class(...))
統一改寫成object = Class(...)
。
C++ 代碼:
Handle<Quote> underlyingH(
ext::shared_ptr<Quote>(new SimpleQuote(underlying)));
Python 代碼:
underlyingH = ql.QuoteHandle(ql.SimpleQuote(underlying))
Quote
類和 Handle
模板是 QuantLib 中最常用到的兩個類(模板),它們通常充當“觀察者模式”中被觀察的一方,一般被當做參數來配置更復雜類的實例。Quote
類接受一個浮點數做參數,而 Handle
模板接受一個智能指針。當用戶修改 Quote
實例的值,或 Handle
實例指向的指針之后,那些接受過這些實例的復雜類對象會接到通知,並自動觸發相關計算。這個機制非常贊!
關於 Quote
的具體使用案例,詳情可以參考《Quote
帶來的便利》。
QuantLib 的 Python 接口已經包裝了 Handle
模板的一些實例化,例如 QuoteHandle
和下面將要看到的 YieldTermStructureHandle
,這些類有一致的命名格式——ClassHandle
。
還是那句話,C++ 模板的實例化實際上就是一個具體的類,因此,這部分代碼的改寫方法遵循經驗 1 和經驗 6。
C++ 代碼:
// bootstrap the yield/dividend/vol curves
Handle<YieldTermStructure> flatTermStructure(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, riskFreeRate, dayCounter)));
Handle<YieldTermStructure> flatDividendTS(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, dividendYield, dayCounter)));
Handle<BlackVolTermStructure> flatVolTS(
ext::shared_ptr<BlackVolTermStructure>(
new BlackConstantVol(
settlementDate, calendar, volatility, dayCounter)));
ext::shared_ptr<StrikedTypePayoff> payoff(
new PlainVanillaPayoff(type, strike));
ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess(
underlyingH, flatDividendTS, flatTermStructure, flatVolTS));
// options
VanillaOption europeanOption(payoff, europeanExercise);
VanillaOption bermudanOption(payoff, bermudanExercise);
VanillaOption americanOption(payoff, americanExercise);
// Analytic formulas:
// Black-Scholes for European
method = "Black-Scholes";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new AnalyticEuropeanEngine(bsmProcess)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// semi-analytic Heston for European
method = "Heston semi-analytic";
ext::shared_ptr<HestonProcess> hestonProcess(
new HestonProcess(
flatTermStructure, flatDividendTS, underlyingH,
volatility * volatility, 1.0, volatility * volatility, 0.001, 0.0));
ext::shared_ptr<HestonModel> hestonModel(
new HestonModel(hestonProcess));
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new AnalyticHestonEngine(hestonModel)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// semi-analytic Bates for European
method = "Bates semi-analytic";
ext::shared_ptr<BatesProcess> batesProcess(
new BatesProcess(
flatTermStructure, flatDividendTS, underlyingH,
volatility * volatility, 1.0, volatility * volatility,
0.001, 0.0, 1e-14, 1e-14, 1e-14));
ext::shared_ptr<BatesModel> batesModel(
new BatesModel(batesProcess));
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(new BatesEngine(batesModel)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// Barone-Adesi and Whaley approximation for American
method = "Barone-Adesi/Whaley";
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BaroneAdesiWhaleyApproximationEngine(bsmProcess)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << "N/A"
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Bjerksund and Stensland approximation for American
method = "Bjerksund/Stensland";
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BjerksundStenslandApproximationEngine(bsmProcess)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << "N/A"
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Integral
method = "Integral";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new IntegralEngine(bsmProcess)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// Finite differences
Size timeSteps = 801;
method = "Finite differences";
ext::shared_ptr<PricingEngine> fdengine =
ext::make_shared<FdBlackScholesVanillaEngine>(
bsmProcess, timeSteps, timeSteps - 1);
europeanOption.setPricingEngine(fdengine);
bermudanOption.setPricingEngine(fdengine);
americanOption.setPricingEngine(fdengine);
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
Python 代碼:
# bootstrap the yield/dividend/vol curves
flatTermStructure = ql.YieldTermStructureHandle(
ql.FlatForward(settlementDate, riskFreeRate, dayCounter))
flatDividendTS = ql.YieldTermStructureHandle(
ql.FlatForward(settlementDate, dividendYield, dayCounter))
flatVolTS = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(
settlementDate, calendar, volatility, dayCounter))
payoff = ql.PlainVanillaPayoff(optType, strike)
bsmProcess = ql.BlackScholesMertonProcess(
underlyingH, flatDividendTS, flatTermStructure, flatVolTS)
# options
europeanOption = ql.VanillaOption(payoff, europeanExercise)
bermudanOption = ql.VanillaOption(payoff, bermudanExercise)
americanOption = ql.VanillaOption(payoff, americanExercise)
# Analytic formulas:
# Black-Scholes for European
method = 'Black-Scholes'
europeanOption.setPricingEngine(
ql.AnalyticEuropeanEngine(bsmProcess))
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# semi-analytic Heston for European
method = 'Heston semi-analytic'
hestonProcess = ql.HestonProcess(
flatTermStructure, flatDividendTS, underlyingH,
volatility * volatility, 1.0, volatility * volatility, 0.001, 0.0)
hestonModel = ql.HestonModel(hestonProcess)
europeanOption.setPricingEngine(
ql.AnalyticHestonEngine(hestonModel))
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# semi-analytic Bates for European
method = 'Bates semi-analytic'
batesProcess = ql.BatesProcess(
flatTermStructure, flatDividendTS, underlyingH,
volatility * volatility, 1.0, volatility * volatility,
0.001, 0.0, 1e-14, 1e-14, 1e-14)
batesModel = ql.BatesModel(batesProcess)
europeanOption.setPricingEngine(
ql.BatesEngine(batesModel))
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# Barone-Adesi and Whaley approximation for American
method = 'Barone-Adesi/Whaley'
americanOption.setPricingEngine(
ql.BaroneAdesiWhaleyEngine(bsmProcess))
tab.add_row([method, 'N/A', 'N/A', americanOption.NPV()])
# Bjerksund and Stensland approximation for American
method = 'Bjerksund/Stensland'
americanOption.setPricingEngine(
ql.BjerksundStenslandEngine(bsmProcess))
tab.add_row([method, 'N/A', 'N/A', americanOption.NPV()])
# Integral
method = 'Integral'
europeanOption.setPricingEngine(
ql.IntegralEngine(bsmProcess))
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# Finite differences
timeSteps = 801
method = 'Finite differences'
fdengine = ql.FdBlackScholesVanillaEngine(bsmProcess, timeSteps, timeSteps - 1)
europeanOption.setPricingEngine(fdengine)
bermudanOption.setPricingEngine(fdengine)
americanOption.setPricingEngine(fdengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
這部分代碼的改寫沒什么新意,需要注意的是,某些非模板類在被包裝時會被重命名,例如 BaroneAdesiWhaleyApproximationEngine
被重命名為 BaroneAdesiWhaleyEngine
。如果用戶根據前面的 6 條經驗找不到 Python 接口中的對應物,那么,要改寫的 C++ 代碼可能遇到了重命名的情況。這時,用戶需要到 QuantLib-SWIG 的接口文件中查找 C++ 類(結構體)或函數,看看有沒有被重命名。繼續前面的例子,SWIG 代碼 %rename(BaroneAdesiWhaleyEngine) BaroneAdesiWhaleyApproximationEngine;
表明 BaroneAdesiWhaleyApproximationEngine
被重命名為 BaroneAdesiWhaleyEngine
。
經驗 7:疑似遇到重命名的情況(常見於名字特別長的類),到 QuantLib-SWIG 的接口文件中查找重命名命令。
C++ 代碼:
// Binomial method: Jarrow-Rudd
method = "Binomial Jarrow-Rudd";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<JarrowRudd>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<JarrowRudd>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<JarrowRudd>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Cox-Ross-Rubinstein
method = "Binomial Cox-Ross-Rubinstein";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<CoxRossRubinstein>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<CoxRossRubinstein>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<CoxRossRubinstein>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Additive equiprobabilities
method = "Additive equiprobabilities";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<AdditiveEQPBinomialTree>(
bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<AdditiveEQPBinomialTree>(
bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<AdditiveEQPBinomialTree>(
bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Binomial Trigeorgis
method = "Binomial Trigeorgis";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Trigeorgis>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Trigeorgis>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Trigeorgis>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Binomial Tian
method = "Binomial Tian";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Tian>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Tian>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Tian>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Binomial Leisen-Reimer
method = "Binomial Leisen-Reimer";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<LeisenReimer>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<LeisenReimer>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<LeisenReimer>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
// Binomial method: Binomial Joshi
method = "Binomial Joshi";
europeanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Joshi4>(bsmProcess, timeSteps)));
bermudanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Joshi4>(bsmProcess, timeSteps)));
americanOption.setPricingEngine(
ext::shared_ptr<PricingEngine>(
new BinomialVanillaEngine<Joshi4>(bsmProcess, timeSteps)));
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << bermudanOption.NPV()
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
Python 代碼:
# Binomial method: Jarrow-Rudd
method = 'Binomial Jarrow-Rudd'
jrengine = ql.BinomialJRVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(jrengine)
bermudanOption.setPricingEngine(jrengine)
americanOption.setPricingEngine(jrengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Cox-Ross-Rubinstein
method = 'Binomial Cox-Ross-Rubinstein'
crrengine = ql.BinomialCRRVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(crrengine)
bermudanOption.setPricingEngine(crrengine)
americanOption.setPricingEngine(crrengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Additive equiprobabilities
method = 'Additive equiprobabilities'
eqpengine = ql.BinomialEQPVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(eqpengine)
bermudanOption.setPricingEngine(eqpengine)
americanOption.setPricingEngine(eqpengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Binomial Trigeorgis
method = 'Binomial Trigeorgis'
trengine = ql.BinomialTrigeorgisVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(trengine)
bermudanOption.setPricingEngine(trengine)
americanOption.setPricingEngine(trengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Binomial Tian
method = 'Binomial Tian'
tiengine = ql.BinomialTianVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(tiengine)
bermudanOption.setPricingEngine(tiengine)
americanOption.setPricingEngine(tiengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Binomial Leisen-Reimer
method = 'Binomial Leisen-Reimer'
lrengine = ql.BinomialLRVanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(lrengine)
bermudanOption.setPricingEngine(lrengine)
americanOption.setPricingEngine(lrengine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
# Binomial method: Binomial Joshi
method = 'Binomial Joshi'
j4engine = ql.BinomialJ4VanillaEngine(bsmProcess, timeSteps)
europeanOption.setPricingEngine(j4engine)
bermudanOption.setPricingEngine(j4engine)
americanOption.setPricingEngine(j4engine)
tab.add_row([method, europeanOption.NPV(), bermudanOption.NPV(), americanOption.NPV()])
對於 C++ 中的模板,SWIG 在包裝 Python 接口時只包裝模板的實例化,並且會為模板的實例化取一個新名字。這時,用戶需要到 QuantLib-SWIG 的接口文件中查找模板的實例化,看看取了什么新名字。繼續前面的例子,SWIG 代碼 %template(BinomialJRVanillaEngine) BinomialVanillaEngine<JarrowRudd>;
表示 BinomialVanillaEngine<JarrowRudd>
在 Python 中對應的類叫做 BinomialJRVanillaEngine
。
經驗 8:遇到模板實例化的情況,到 QuantLib-SWIG 的接口文件中查找實例化后新的類名。
C++ 代碼:
// Monte Carlo Method: MC (crude)
timeSteps = 1;
method = "MC (crude)";
Size mcSeed = 42;
ext::shared_ptr<PricingEngine> mcengine1;
mcengine1 = MakeMCEuropeanEngine<PseudoRandom>(
bsmProcess)
.withSteps(timeSteps)
.withAbsoluteTolerance(0.02)
.withSeed(mcSeed);
europeanOption.setPricingEngine(mcengine1);
// Real errorEstimate = europeanOption.errorEstimate();
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// Monte Carlo Method: QMC (Sobol)
method = "QMC (Sobol)";
Size nSamples = 32768; // 2^15
ext::shared_ptr<PricingEngine> mcengine2;
mcengine2 = MakeMCEuropeanEngine<LowDiscrepancy>(
bsmProcess)
.withSteps(timeSteps)
.withSamples(nSamples);
europeanOption.setPricingEngine(mcengine2);
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << europeanOption.NPV()
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << "N/A"
<< std::endl;
// Monte Carlo Method: MC (Longstaff Schwartz)
method = "MC (Longstaff Schwartz)";
ext::shared_ptr<PricingEngine> mcengine3;
mcengine3 = MakeMCAmericanEngine<PseudoRandom>(
bsmProcess)
.withSteps(100)
.withAntitheticVariate()
.withCalibrationSamples(4096)
.withAbsoluteTolerance(0.02)
.withSeed(mcSeed);
americanOption.setPricingEngine(mcengine3);
std::cout << std::setw(widths[0]) << std::left << method
<< std::fixed
<< std::setw(widths[1]) << std::left << "N/A"
<< std::setw(widths[2]) << std::left << "N/A"
<< std::setw(widths[3]) << std::left << americanOption.NPV()
<< std::endl;
Python 代碼:
timeSteps = 1
# Monte Carlo Method: MC (crude)
method = 'MC (crude)'
mcSeed = 42
mcengine1 = ql.MCPREuropeanEngine(
bsmProcess,
timeSteps=timeSteps,
requiredTolerance=0.02,
seed=mcSeed)
europeanOption.setPricingEngine(mcengine1)
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# Monte Carlo Method: QMC (Sobol)
method = 'QMC (Sobol)'
nSamples = 32768 # 2^15
mcengine2 = ql.MCLDEuropeanEngine(
bsmProcess,
timeSteps=timeSteps,
requiredSamples=nSamples)
europeanOption.setPricingEngine(mcengine2)
tab.add_row([method, europeanOption.NPV(), 'N/A', 'N/A'])
# Monte Carlo Method: MC (Longstaff Schwartz)
method = 'MC (Longstaff Schwartz)'
mcengine3 = ql.MCPRAmericanEngine(
bsmProcess,
timeSteps=100,
antitheticVariate=True,
nCalibrationSamples=4096,
requiredTolerance=0.02,
seed=mcSeed)
americanOption.setPricingEngine(mcengine3)
tab.add_row([method, 'N/A', 'N/A', americanOption.NPV()])
tab.float_format = '.6'
tab.align = 'l'
print(tab)
MakeMCEuropeanEngine<PseudoRandom>
是 QuantLib 中工廠模式的一個實現,對於擁有較多默認參數的類,QuantLib 會提供一個對應的工廠類,用戶借助工廠類“制造”一個半成品對象,並通過一組成員函數以流水線的方式配置這個半成品的參數,以實現對默認參數的靈活配置。這些流水線函數有一致的命名格式——withArgument
,Argument
通常是某個默認參數的名字。這套機制也被稱為“命名參數慣用法”。這些工廠類有一致的命名規范——MakeClass
,其中 Class
是一個類的名字或實例化的模板,MakeClass
將制造出一個 Class
對象。
Python 中存在“關鍵字參數”的機制,因此,上述“流水線函數”顯得非常笨拙,對於這類代碼的改寫,用戶只要知道“MakeClass
將制造出一個 Class
對象”這一點,並理解流水線函數所配置的參數,然后應用前面總結的 8 條經驗就可以成功改寫。
經驗 9:名為
MakeClass
的工廠類將制造出一個Class
對象,后續的成員函數表示配置的參數。
對比結果
C++ 代碼運行結果:
Option type = Put
Maturity = May 17th, 1999
Underlying price = 36
Strike = 40
Risk-free interest rate = 6.000000 %
Dividend yield = 0.000000 %
Volatility = 20.000000 %
Method European Bermudan American
Black-Scholes 3.844308 N/A N/A
Heston semi-analytic 3.844306 N/A N/A
Bates semi-analytic 3.844306 N/A N/A
Barone-Adesi/Whaley N/A N/A 4.459628
Bjerksund/Stensland N/A N/A 4.453064
Integral 3.844309 N/A N/A
Finite differences 3.844330 4.360765 4.486113
Binomial Jarrow-Rudd 3.844132 4.361174 4.486552
Binomial Cox-Ross-Rubinstein 3.843504 4.360861 4.486415
Additive equiprobabilities 3.836911 4.354455 4.480097
Binomial Trigeorgis 3.843557 4.360909 4.486461
Binomial Tian 3.844171 4.361176 4.486413
Binomial Leisen-Reimer 3.844308 4.360713 4.486076
Binomial Joshi 3.844308 4.360713 4.486076
MC (crude) 3.834522 N/A N/A
QMC (Sobol) 3.844613 N/A N/A
MC (Longstaff Schwartz) N/A N/A 4.456935
Python 程序運行結果:
Option type = -1
Maturity = May 17th, 1999
Underlying price = 36.0
Strike = 40.0
Risk-free interest rate = 6.000000%
Dividend yield = 0.000000%
Volatility = 20.000000%
+------------------------------+----------+----------+----------+
| Method | European | Bermudan | American |
+------------------------------+----------+----------+----------+
| Black-Scholes | 3.844308 | N/A | N/A |
| Heston semi-analytic | 3.844306 | N/A | N/A |
| Bates semi-analytic | 3.844306 | N/A | N/A |
| Barone-Adesi/Whaley | N/A | N/A | 4.459628 |
| Bjerksund/Stensland | N/A | N/A | 4.453064 |
| Integral | 3.844309 | N/A | N/A |
| Finite differences | 3.844330 | 4.360765 | 4.486113 |
| Binomial Jarrow-Rudd | 3.844132 | 4.361174 | 4.486552 |
| Binomial Cox-Ross-Rubinstein | 3.843504 | 4.360861 | 4.486415 |
| Additive equiprobabilities | 3.836911 | 4.354455 | 4.480097 |
| Binomial Trigeorgis | 3.843557 | 4.360909 | 4.486461 |
| Binomial Tian | 3.844171 | 4.361176 | 4.486413 |
| Binomial Leisen-Reimer | 3.844308 | 4.360713 | 4.486076 |
| Binomial Joshi | 3.844308 | 4.360713 | 4.486076 |
| MC (crude) | 3.834522 | N/A | N/A |
| QMC (Sobol) | 3.844613 | N/A | N/A |
| MC (Longstaff Schwartz) | N/A | N/A | 4.456935 |
+------------------------------+----------+----------+----------+
完全一樣!
總結
- 經驗 1:對象聲明語句
BaseClass object = Class(...)
和Class object(...)
統一改寫成object = Class(...)
。 - 經驗 2:用來對
Settings::instance()
進行配置的成員函數,例如evaluationDate()
,在 Python 中以類的property
形式出現,不過名稱不變。 - 經驗 3:對於類中的枚舉類型,
Class::Enum object(Class::element)
語句統一改寫成object = Class.element
。 - 經驗 4:對於基本類型,
Type object = value
語句統一改寫成object = value
。 - 經驗 5:隱式轉換成
Period
對象的代碼在改寫時要改成顯式聲明的格式,這類代碼通常與枚舉類型TimeUnit
有關。 - 經驗 6:對於智能指針,
shared_ptr<BaseClass> object(new Class(...))
統一改寫成object = Class(...)
。 - 經驗 7:疑似遇到重命名的情況(常見於名字特別長的類),到 QuantLib-SWIG 的接口文件中查找重命名命令。
- 經驗 8:遇到模板實例化的情況,到 QuantLib-SWIG 的接口文件中查找實例化后新的類名。
- 經驗 9:名為
MakeClass
的工廠類將制造出一個Class
對象,后續的成員函數表示配置的參數。
需要注意的是,QuantLib 中並非所有的功能都有對應的 Python 接口,如果用戶需要的功能未被包裝,用戶只好修改 SWIG 代碼,自行生成 Python 接口,可以參考一下文章: