sigmod、tanh、ReLU激活函數的實現


import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
x = torch.linspace(-10,10,60)
fig = plt.figure(figsize=(14,4))
ae = fig.add_subplot(131)  #sigmod激活函數
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
y = torch.sigmoid(x)
plt.plot(x.numpy(),y.numpy())
plt.ylim((0,1))

ae = fig.add_subplot(132)  #tanh激活函數
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
y1 = torch.tanh(x)
plt.plot(x.numpy(),y1.numpy())
plt.ylim((-1,1))

ae = fig.add_subplot(133)  # ReLU激活函數
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
y2 = F.relu(x)
plt.plot(x.numpy(),y2.numpy())
plt.ylim((-1,5))

plt.show()

輸出:

sigmod公式:

一般會造成梯度消失。

tanh公式:

 

tanh是以0為中心點,如果使用tanh作為激活函數,能夠起到歸一化(均值為0)的效果。

Relu(Rectified Linear Units)修正線性單元

$a=max(0,z)$ 導數大於0時1,小於0時0。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM