python3.6_多進程_multiprocessing.pool_concurrent.futures_ProcessPoolExecutor_對比


python3.6_多進程_multiprocessing.pool_concurrent.futures_ProcessPoolExecutor_對比

轉載注明來源: 本文鏈接 來自osnosn的博客,寫於 2020-06-27.

多進程的多種寫法,在大量任務的情況下,效率的對比。

(后面有兩個例程參考)

import time
from multiprocessing.pool import Pool
from concurrent.futures import as_completed, ProcessPoolExecutor

NUMBERS = range(1, 60000)
K = 50

def f(x):
    r = 0
    for k in range(1, K+2):
        r += x ** (1 / k**1.5)
    return ['xx',r]

if __name__ == '__main__':
    if 1:
        print('-------------------\n no multiProcessing:')
        start = time.time()
        l = []
        for nn in NUMBERS:
            result=f(nn)
            l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n multiprocessing.pool.Pool:')
        start = time.time()
        l = []
        pool = Pool(4)
        for num, result in zip(NUMBERS, pool.map(f, NUMBERS)):
            l.append(result)
        pool.close()
        pool.terminate()
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n multiprocessing.pool.Pool, apply_async:')
        start = time.time()
        l = []
        pool = Pool(4)
        res=[]
        for nn in NUMBERS:
            res.append(pool.apply_async(f,(nn,)))
        pool.close()
        print('middle COST: {}'.format(time.time() - start))
        pool.join()
        for rr in res:
            l.append(rr.get())
        pool.terminate()
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n multiprocessing.pool.Pool, apply_async,maxtasksperchild=1000 :')
        start = time.time()
        l = []
        pool = Pool(4,maxtasksperchild=1000)
        res=[]
        for nn in NUMBERS:
            res.append(pool.apply_async(f,(nn,)))
        pool.close()
        print('middle COST: {}'.format(time.time() - start))
        pool.join()
        for rr in res:
            l.append(rr.get())
        pool.terminate()
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor with chunksize,1/4:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            chunksize, extra = divmod(len(NUMBERS), executor._max_workers * 4)
            print('chunksize',chunksize)
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS, chunksize=chunksize)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor with chunksize,1/10:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            chunksize, extra = divmod(len(NUMBERS), executor._max_workers * 10)
            print('chunksize',chunksize)
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS, chunksize=chunksize)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor with chunksize,1/100:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            chunksize, extra = divmod(len(NUMBERS), executor._max_workers * 100)
            print('chunksize',chunksize)
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS, chunksize=chunksize)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor with chunksize,1/300:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            chunksize, extra = divmod(len(NUMBERS), executor._max_workers * 300)
            print('chunksize',chunksize)
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS, chunksize=chunksize)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor with chunksize,500:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            chunksize=500
            print('chunksize',chunksize)
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS, chunksize=chunksize)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor submit:')
        start = time.time()
        pool_res=[]
        executor=ProcessPoolExecutor(max_workers=4)
        for nn in NUMBERS:
            res=executor.submit(f,nn)
            pool_res.append(res)
        print('middle COST: {}'.format(time.time() - start))
        l = []
        for p_res in as_completed(pool_res):
            result=p_res.result()
            l.append(result)
        executor.shutdown()
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))
    if 1:
        print('-------------------\n ProcessPoolExecutor without chunksize:')
        start = time.time()
        l = []
        with ProcessPoolExecutor(max_workers=4) as executor:
            for num, result in zip(NUMBERS, executor.map(f, NUMBERS)):
                l.append(result)
        print(len(l), l[0])
        print('COST: {}'.format(time.time() - start))

    print('')

結果:

-------------------
 no multiProcessing:
59999 ['xx', 51.0]
COST: 1.2773692607879639
-------------------
 multiprocessing.pool.Pool:
59999 ['xx', 51.0]
COST: 0.4585001468658447
-------------------
 multiprocessing.pool.Pool, apply_async:
middle COST: 1.492830514907837
59999 ['xx', 51.0]
COST: 4.116384267807007
-------------------
 multiprocessing.pool.Pool, apply_async,maxtasksperchild=1000 :
middle COST: 2.0289459228515625
59999 ['xx', 51.0]
COST: 5.032078266143799
-------------------
 ProcessPoolExecutor with chunksize,1/4:
chunksize 3749
59999 ['xx', 51.0]
COST: 0.4767882823944092
-------------------
 ProcessPoolExecutor with chunksize,1/10:
chunksize 1499
59999 ['xx', 51.0]
COST: 0.5644888877868652
-------------------
 ProcessPoolExecutor with chunksize,1/100:
chunksize 149
59999 ['xx', 51.0]
COST: 0.4668114185333252
-------------------
 ProcessPoolExecutor with chunksize,1/300:
chunksize 49
59999 ['xx', 51.0]
COST: 0.673607587814331
-------------------
 ProcessPoolExecutor with chunksize,500:
chunksize 500
59999 ['xx', 51.0]
COST: 0.45476365089416504
-------------------
 ProcessPoolExecutor submit:
middle COST: 11.38172698020935
59999 ['xx', 16145.294670113708]
COST: 21.179430723190308
-------------------
 ProcessPoolExecutor without chunksize:
59999 ['xx', 51.0]
COST: 20.61406421661377

區別還挺大, 測試機器cpu有6核。python3.6

參考:
使用Python進行並發編程-PoolExecutor篇
concurrent.futures


感覺用 pool.map() 並設置 chunksize 比較好

例子01

#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
多進程例程,
隊列一次全部准備好,一次啟動子進程。
"""

import os
from concurrent.futures import ProcessPoolExecutor as Pool

def child_do(ii,fnn): #正真的子進程,可以接收多個參數
    #可以打開hdf5文件,可以print()
    print(ii,'child')
    #返回參數可以是dataframe,返回參數可以是多個結果
    res2=res3=res4= ii+2+fnn
    return [ii,res2,res3,res4] #此處返回4個結果

def child_one(param): #此函數只有一個參數
    result=child_do(* param) #把param展開,傳給函數
    return result

def do_main():
    # do something...
    cpucount=os.cpu_count() #進程數=系統cpu個數
    if cpucount<3: cpucount=3
    cpucount=4 #指定進程數,(cpu太多,還是指定算了,上面2行其實沒有用)

    pool=Pool(cpucount) #開啟進程池,后面用pool.map()啟動子進程
    pool_args=[] #傳給子進程的參數隊列

    ii=0 #計數
    for fnn in range(0,1115):
        ii+=1
        # 放入隊列,子進程只能接受一個參數,所以使用tuple封裝多個參數,用list,dict也可以
        # 參數中可以有dataframe, 傳入的是引用.
        # 但要注意:多個進程同時修改同一個dataframe可能有問題
        pool_args.append((ii,fnn,) ) #(child_do接受兩個參數)

    #子進程的參數是由主進程發送的。一次發送一個,效率很低,很耗時。所以一次就發送一堆。
    chunksize,_=divmod(len(pool_args),pool._max_workers * 30) #參數分30次傳輸
    if chunksize<50:
        chunksize=50  #太小就設50
    elif chunksize>200:
        chunksize=200 #太大就設200

    for p_result in pool.map(child_one, pool_args, chunksize=chunksize): #啟動子進程,並等待返回
        jj,res2,res3,res4=p_result  # 獲取子進程的返回數據(child_do返回了4個結果)
        print(jj,res2,res3,res4)
        # 匯總結果

    print('啟動進程池',ii)
    pool.shutdown() #關閉進程池

    # 處理匯總的結果

if __name__=='__main__':
    do_main()

例子02

#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
多進程例程
隊列准備多次,多次啟動子進程。
"""

import os
from concurrent.futures import ProcessPoolExecutor as Pool
import time

def child_do(ii,fnn): #正真的子進程,可以接收多個參數
    #可以打開hdf5文件,可以print
    print(ii,'child')
    #返回參數可以是dataframe,返回參數可以是多個結果
    res2=res3=res4= ii+2+fnn
    return [ii,res2,res3,res4] #此處返回4個結果

def child_one(param): #此函數只有一個參數
    result=child_do(* param) #把param展開,傳給函數
    return result

#啟動進程池,並處理結果(此函數不會多進程同時執行)
def do_result(pool, pool_args ):
    #子進程的參數是由主進程發送的。一次發送一個,效率很低,很耗時。所以一次就發送一堆。
    chunksize=20 #實際使用可以設50或100
    for p_result in pool.map(child_one, pool_args, chunksize=chunksize): #啟動進程池,並等待返回
        jj,res2,res3,res4=p_result  # 獲取子進程的返回數據(child_do返回了4個結果)
        print(jj,res2,res3,res4)
        # 匯總結果
    return res2 #返回匯總結果

def do_main():
    # 先做一些准備工作

    cpucount=os.cpu_count() #進程數=系統cpu個數
    if cpucount<3: cpucount=3
    cpucount=4 #指定進程數,(cpu太多,還是指定算了,上面2行其實沒有用)

    pool=Pool(cpucount) #開啟進程池,后面用pool.map()啟動子進程
    pool_args=[] #傳給子進程的參數隊列

    ii=0 #計數
    for fnn in range(0,1115):
        ii+=1
        # 放入隊列,子進程只能接受一個參數,所以使用tuple封裝多個參數,用list,dict也可以
        # 參數中可以有dataframe, 傳入的是引用.
        # 但要注意:多個進程同時修改同一個dataframe可能有問題
        pool_args.append((ii,fnn,) ) #(child_do接受兩個參數)

        if (ii % 200) == 0: #實際可設每1000個啟動一次子進程池
            mysum=do_result(pool, pool_args)
            pool_args=[] #清空參數隊列
            print('啟動進程池',ii)
            time.sleep(0.5) #僅為了測試時暫停一下,方便查看輸出

    #循環結束,再啟動一次進程池,把剩余隊列的處理掉
    mysum=do_result(pool, pool_args)
    print('啟動進程池',ii)
    pool.shutdown() #關閉進程池

    # 處理匯總的結果

if __name__=='__main__':
    do_main()

轉載注明來源: 本文鏈接 來自osnosn的博客.


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM