[Python]貪心算法-Prim-和-Kruskal實現-最小生成樹


目標

在連通網的所有生成樹中,找到所有邊的代價和最小的生成樹,簡稱最小生成樹問題.
(簡要的來說,就是在AOV網中找出串聯n個頂點代價總和最小的邊集)

下面記錄最小生成樹的兩種算法,Prim和Kruskal

Prim算法思路

  1. 從任意一個頂點開始,每次選擇與當前頂點最近的一個頂點,並將兩點之間的邊加入到樹中
  2. 被選中的點構成一個集合,剩下的點是候選集
  3. 每次從已選擇的點的集合中,查找花費最小的點,加入進來
  4. 同時在候選集中刪去,
  5. 重復3和4,知道候選集中沒有元素。

Prim算法代碼

def cmp(key1, key2):
    return (key1, key2) if key1 < key2 else (key2, key1)


def prim(graph, init_node):
    visited = {init_node}
    candidate = set(graph.keys())
    candidate.remove(init_node)  # add all nodes into candidate set, except the start node
    tree = []

    while len(candidate) > 0:
        edge_dict = dict()
        for node in visited:  # find all visited nodes
            for connected_node, weight in graph[node].items():  # find those were connected
                if connected_node in candidate:
                    edge_dict[cmp(connected_node, node)] = weight
        edge, cost = sorted(edge_dict.items(), key=lambda kv: kv[1])[0]  # find the minimum cost edge
        tree.append(edge)
        visited.add(edge[0])  # cause you dont know which node will be put in the first place
        visited.add(edge[1])
        candidate.discard(edge[0]) # same reason. discard wont raise an exception.
        candidate.discard(edge[1])
    return tree


if __name__ == '__main__':
    graph_dict = {
        "A": {"B": 7, "D": 5},
        "B": {"A": 7, "C": 8, "D": 9, "E": 5},
        "C": {"B": 8, "E": 5},
        "D": {"A": 5, "B": 9, "E": 15, "F": 6},
        "E": {"B": 7, "C": 5, "D": 15, "F": 8, "G": 9},
        "F": {"D": 6, "E": 8, "G": 11},
        "G": {"E": 9, "F": 11}
    }

    path = prim(graph_dict, "D")
    print(path)  # [('A', 'D'), ('D', 'F'), ('A', 'B'), ('B', 'E'), ('C', 'E'), ('E', 'G')]

與Prim算法關注圖的點不同,Kruskal算法更關注圖中的邊。

Kruskal算法思路

  1. 首先對圖中所有的邊進行遞增排序,排序標准是每條邊的權值
  2. 依次遍歷每條邊,如果這條邊加進去之后,不會使圖形成環,那就加進去,否則放棄

Kruskal算法雖然看起來思路清晰,但是如何判斷圖中是否成環,比較難理解。

Kruskal算法代碼

def cmp(key1, key2):
    return (key1, key2) if key1 < key2 else (key2, key1)


def find_parent(record, node):
    if record[node] != node:
        record[node] = find_parent(record, record[node])
    return record[node]


def naive_union(record, edge):
    u, v = find_parent(record, edge[0]), find_parent(record, edge[1])
    record[u] = v


def kruskal(graph, init_node):
    edge_dict = {}
    for node in graph.keys():
        edge_dict.update({cmp(node, k): v for k, v in graph[node].items()})
    sorted_edge = list(sorted(edge_dict.items(), key=lambda kv: kv[1]))
    tree = []
    connected_records = {key: key for key in graph.keys()}

    for edge_pair, _ in sorted_edge:
        if find_parent(connected_records, edge_pair[0]) != \
                find_parent(connected_records, edge_pair[1]):
            tree.append(edge_pair)
            naive_union(connected_records, edge_pair)
    return tree


if __name__ == '__main__':
    graph_dict = {
        "A": {"B": 7, "D": 5},
        "B": {"A": 7, "C": 8, "D": 9, "E": 5},
        "C": {"B": 8, "E": 5},
        "D": {"A": 5, "B": 9, "E": 15, "F": 6},
        "E": {"B": 7, "C": 5, "D": 15, "F": 8, "G": 9},
        "F": {"D": 6, "E": 8, "G": 11},
        "G": {"E": 9, "F": 11}
    }

    path = kruskal(graph_dict, "D")
    print(path)  # [('A', 'D'), ('D', 'F'), ('A', 'B'), ('B', 'E'), ('C', 'E'), ('E', 'G')]

參考文章

  1. 圖遍歷算法之最小生成樹Prim算法與 Kruskal算法)
  2. 圖論(6):圖的最小生成樹問題 - Prim和Kruskal算法
  3. 判斷成環
  4. 談談Kruskal與Prim這兩種最小生成樹算法(Python實現)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM