【PyTorch】L2 正則化


論文 Bag of Tricks for Image Classification with Convolutional Neural Networks. 中提到,加 L2 正則就相當於將該權重趨向 0,而對於 CNN 而言,一般只對卷積層和全連接層的 weights 進行 L2(weight decay),而不對 biases 進行。Batch Normalization 層也不進行 L2。

PyTorch,只對卷積層和全連接層的 weights 進行 L2(weight decay):

weight_decay_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias' and "bn" not in name)
no_decay_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias' or "bn" in name)
parameters = [{'params': weight_decay_list},
              {'params': no_decay_list, 'weight_decay': 0.}]

optimizer = torch.optim.SGD(parameters, lr=0.1, momentum=0.9, weight_decay=5e-4, nesterov=True)

References

[1] He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M. (2019). Bag of Tricks for Image Classification with Convolutional Neural Networks. (CVPR) https://dx.doi.org/10.1109/cvpr.2019.00065


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM