一、消息隊列概述
消息隊列中間件是分布式系統中重要的組件,主要解決應用解耦,異步消息,流量削鋒等問題,實現高性能,高可用,可伸縮和最終一致性架構。目前使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ
二、消息隊列應用場景
以下介紹消息隊列在實際應用中常用的使用場景。異步處理,應用解耦,流量削鋒和消息通訊四個場景。
2.1異步處理
場景說明:用戶注冊后,需要發注冊郵件和注冊短信。傳統的做法有兩種 1.串行的方式;2.並行方式
a、串行方式:將注冊信息寫入數據庫成功后,發送注冊郵件,再發送注冊短信。以上三個任務全部完成后,返回給客戶端。
b、並行方式:將注冊信息寫入數據庫成功后,發送注冊郵件的同時,發送注冊短信。以上三個任務完成后,返回給客戶端。與串行的差別是,並行的方式可以提高處理的時間
假設三個業務節點每個使用50毫秒鍾,不考慮網絡等其他開銷,則串行方式的時間是150毫秒,並行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。並行方式處理的請求量是10次(1000/100)
小結:如以上案例描述,傳統的方式系統的性能(並發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,異步處理。改造后的架構如下:
按照以上約定,用戶的響應時間相當於是注冊信息寫入數據庫的時間,也就是50毫秒。注冊郵件,發送短信寫入消息隊列后,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變后,系統的吞吐量提高到每秒20 QPS。比串行提高了3倍,比並行提高了兩倍。
2.2應用解耦
場景說明:用戶下單后,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的接口。如下圖:
傳統模式的缺點:假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失敗,訂單系統與庫存系統耦合
如何解決以上問題呢?引入應用消息隊列后的方案,如下圖:
訂單系統:用戶下單后,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功
庫存系統:訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作
假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單后,訂單系統寫入消息隊列就不再關心其他的后續操作了。實現訂單系統與庫存系統的應用解耦
2.3流量削鋒
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
a、可以控制活動的人數
b、可以緩解短時間內高流量壓垮應用
用戶的請求,服務器接收后,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面。
秒殺業務根據消息隊列中的請求信息,再做后續處理
三、消息中間件示例
3.1電商系統
消息隊列采用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。
(1)應用將主干邏輯處理完成后,寫入消息隊列。消息發送是否成功可以開啟消息的確認模式。(消息隊列返回消息接收成功狀態后,應用再返回,這樣保障消息的完整性)
(2)擴展流程(發短信,配送處理)訂閱隊列消息。采用推或拉的方式獲取消息並處理。
(3)消息將應用解耦的同時,帶來了數據一致性問題,可以采用最終一致性方式解決。比如主數據寫入數據庫,擴展應用根據消息隊列,並結合數據庫方式實現基於消息隊列的后續處理。
3.2日志收集系統
分為Zookeeper注冊中心,日志收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。
Zookeeper注冊中心,提出負載均衡和地址查找服務
日志收集客戶端,用於采集應用系統的日志,並將數據推送到kafka隊列
Kafka集群:接收,路由,存儲,轉發等消息處理
Storm集群:與OtherApp處於同一級別,采用拉的方式消費隊列中的數據
四、JMS消息服務
講消息隊列就不得不提JMS 。JMS(JAVA Message Service,java消息服務)API是一個消息服務的標准/規范,允許應用程序組件基於JavaEE平台創建、發送、接收和讀取消息。它使分布式通信耦合度更低,消息服務更加可靠以及異步性。
在EJB架構中,有消息bean可以無縫的與JM消息服務集成。在J2EE架構模式中,有消息服務者模式,用於實現消息與應用直接的解耦。
五、常用消息隊列
一般商用的容器,比如WebLogic,JBoss,都支持JMS標准,開發上很方便。但免費的比如Tomcat,Jetty等則需要使用第三方的消息中間件。本部分內容介紹常用的消息中間件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他們的特點。
5.1 ActiveMQ
ActiveMQ 是Apache出品,最流行的,能力強勁的開源消息總線。ActiveMQ 是一個完全支持JMS1.1和J2EE 1.4規范的 JMS Provider實現,盡管JMS規范出台已經是很久的事情了,但是JMS在當今的J2EE應用中間仍然扮演着特殊的地位。
ActiveMQ特性如下:
⒈ 多種語言和協議編寫客戶端。語言: Java,C,C++,C#,Ruby,Perl,Python,PHP。應用協議: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 完全支持JMS1.1和J2EE 1.4規范 (持久化,XA消息,事務)
⒊ 對Spring的支持,ActiveMQ可以很容易內嵌到使用Spring的系統里面去,而且也支持Spring2.0的特性
⒋ 通過了常見J2EE服務器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的測試,其中通過JCA 1.5 resource adaptors的配置,可以讓ActiveMQ可以自動的部署到任何兼容J2EE 1.4 商業服務器上
⒌ 支持多種傳送協議:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持通過JDBC和journal提供高速的消息持久化
⒎ 從設計上保證了高性能的集群,客戶端-服務器,點對點
⒏ 支持Ajax
⒐ 支持與Axis的整合
⒑ 可以很容易得調用內嵌JMS provider,進行測試
5.2 Kafka
Kafka是一種高吞吐量的分布式發布訂閱消息系統,它可以處理消費者規模的網站中的所有動作流數據。 這種動作(網頁瀏覽,搜索和其他用戶的行動)是在現代網絡上的許多社會功能的一個關鍵因素。 這些數據通常是由於吞吐量的要求而通過處理日志和日志聚合來解決。 對於像Hadoop的一樣的日志數據和離線分析系統,但又要求實時處理的限制,這是一個可行的解決方案。Kafka的目的是通過Hadoop的並行加載機制來統一線上和離線的消息處理,也是為了通過集群機來提供實時的消費。
Kafka是一種高吞吐量的分布式發布訂閱消息系統,有如下特性:
通過O(1)的磁盤數據結構提供消息的持久化,這種結構對於即使數以TB的消息存儲也能夠保持長時間的穩定性能。(文件追加的方式寫入數據,過期的數據定期刪除)
高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒數百萬的消息
支持通過Kafka服務器和消費機集群來分區消息
支持Hadoop並行數據加載
Kafka相關概念
Broker
Kafka集群包含一個或多個服務器,這種服務器被稱為broker[5]
Topic
每條發布到Kafka集群的消息都有一個類別,這個類別被稱為Topic。(物理上不同Topic的消息分開存儲,邏輯上一個Topic的消息雖然保存於一個或多個broker上但用戶只需指定消息的Topic即可生產或消費數據而不必關心數據存於何處)
Partition
Parition是物理上的概念,每個Topic包含一個或多個Partition.
Producer
負責發布消息到Kafka broker
Consumer
消息消費者,向Kafka broker讀取消息的客戶端。
Consumer Group
每個Consumer屬於一個特定的Consumer Group(可為每個Consumer指定group name,若不指定group name則屬於默認的group)。
一般應用在大數據日志處理或對實時性(少量延遲),可靠性(少量丟數據)要求稍低的場景使用。