慢慢安裝——anconda,cuda,cudnn等


😄 😥 🙃 😭 😡

安裝conda 【本身就不需要root權限】

1.下載anconda https://www.anaconda.com/products/individual
或者直接清華園 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 但是(有時候)出現不穩定抽風:wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2020.02-Linux-x86_64.sh
下載到本地之后,上傳到服務器,改文件 chmod 777 ** ,否則出現xftp上傳錯誤
2. sh Anaconda....sh
3.會提示安裝目錄,輸入一個【還沒有創建的安裝目錄】"Anaconda3 will now be installed into this location": 如 /4Tdisk/用戶名/Anaconda
4.裝完它自己會添加path到~/.bashrc
5. source ~/.bashrc【更新一下用戶配置文件】,通過conda info --e檢查是否安裝好了

換清華源 win/linux下:

建議直接參考官網命令: , 設置清華源鏡像
按提示更改 ~/.condarc。再運行索引緩存 conda clean -i

查看鏡像中是否有要安裝的pytorch版本
或者直接參考下面的(個人覺得不好用,總是抽風(╬▔皿▔)凸)

https://blog.csdn.net/wujialaoer/article/details/84977796

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --set show_channel_urls yes

【有時候網絡還是有問題可參考】https://blog.csdn.net/ebzxw/article/details/80702506
【如果conda 安裝總是 HTTP 錯誤,可使用 pip】 https://blog.csdn.net/lsf_007/article/details/87931823

關於conda 和 pip 安裝

1.首選 conda install ***
2.如果conda太慢或失敗,備選 pip install ***
3.如果pip安裝超時,連接出錯,可以使用 pip install *** -i https://pypi.tuna.tsinghua.edu.cn/simple

安裝cuda

1.查看版本顯卡nvidia-smi,驅動版本是440.44
2.搜“nvidia driver cuda version”,可以看到可以安裝cuda 10.1版本
3.sh cuda***.run
https://blog.csdn.net/hizengbiao/article/details/88625044
4.或者直接使用別人的cuda,寫入到 ~/.profile

PS. 關於找合適的cuda

1.【查看驅動和cuda匹配版本】nvidia-smi 是440.44版本
2.【查看內核和cuda匹配版本】gcc -v 是16.04 5.4.0版本
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFt8KR1efpAhVCIqYKHWKyB5IQFjABegQIBBAB&url=http%3A%2F%2Fdocs.nvidia.com%2Fcuda%2Fcuda-installation-guide-linux%2Findex.html&usg=AOvVaw2lfQs0Aks074pu4AYzt75N

【那我就安裝10.1版本的】




自定義目錄安裝cuda和cudnn

自定義目錄:先創建安裝路徑 /4Tdisk/***/software/cuda/cuda-10.1/
https://blog.csdn.net/hizengbiao/article/details/88625044

【安裝結果】

(base) ***@hp:/4Tdisk/***/download$ sh cuda_10.1.243_418.87.00_linux.run
===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /4Tdisk/***/software/cuda/cuda-10.1/
Samples:  Installed in /home/***/

Please make sure that
 -   PATH includes /4Tdisk/***/software/cuda/cuda-10.1/bin
 -   LD_LIBRARY_PATH includes /4Tdisk/***/software/cuda/cuda-10.1/lib64, or, add /4Tdisk/***/software/cuda/cuda-10.1/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /4Tdisk/***/software/cuda/cuda-10.1/bin

Please see CUDA_Installation_Guide_Linux.pdf in /4Tdisk/***/software/cuda/cuda-10.1/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 418.00 is required for CUDA 10.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /tmp/cuda-installer.log

【按照Summary配置PATH】

export PATH="/4Tdisk/**/cuda/cuda-10.1/bin:$PATH"
export LD_LIBRARY_PATH="/4Tdisk/**/cuda/cuda-10.1/lib64:$LD_LIBRARY_PATH"

下載解壓cudnn與復制

tar -xzvf cudnn-10.1-linux-x64-v7.6.5.32.tgz -C /4Tdisk/***/software/cuda/cuda-10.1/tem

cp /4Tdisk/***/software/cuda/cuda-10.1/tem/cuda/include/cudnn.h /4Tdisk/***/software/cuda/cuda-10.1/include
cp /4Tdisk/***/software/cuda/cuda-10.1/tem/cuda/lib64/libcudnn* /4Tdisk/***/software/cuda/cuda-10.1/lib64
chmod a+r /4Tdisk/***/software/cuda/cuda-10.1/include/cudnn.h /4Tdisk/***/software/cuda/cuda-10.1/lib64/libcudnn*

查看版本 nvcc -V 或者 nvcc --version

安裝pytorch

1.創環境 conda create --name pytorch
conda install pytorch torchvision cudatoolkit=10.1
或者指定pytorch版本
conda install pytorch=1.5 torchvision cudatoolkit=10.1 -c pytorch 【兩種凡是都試試尤其是當網絡抽風的時候😫】

檢查cuda版本和pytorch版本是否一致

$ python -c "import torch; print(torch.version.cuda)"
>>> 10.1

$ nvcc --version
>>> 10.1

測試是否成功

import torch
print(torch.__version__)
print(torch.cuda.is_available())
a = torch.ones(1,1)
print(a.cuda())

莫名其妙 —— 一切隨緣🐶

  1. 報錯段錯誤
    清楚package緩存: conda clean -y --all
  2. Solving environment: failed with initial frozen solve
    conda config --set channel_priority flexible

Conde設置代理:https://blog.csdn.net/leviopku/article/details/98766822


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM