一、Handler機制與ThreadLocal
在Handler機制的時候,我們會接觸到Looper中的一個很重要的類:ThreadLocal,ThreadLocal並不是線程,它的作用是可以在每個線程中存儲數據。
Handler在創建的時候就會獲取當前線程的Looper來構造消息循環系統,獲取的方式就是通過ThreadLocal。ThreadLocal可以在不同的線程中互補干擾的存儲並提供數據,Handler就是通過ThreadLocal可以輕松獲取每個線程的Looper。當然需要注意的是,線程是默認沒有Looper的,如果需要使用Handler就必須為線程創建Looper。
大家經常提到的主線程,也叫UI線程,它就是ActivityThread,ActivityThread被創建時就會初始化Looper,這也是在主線程中默認可以使用Handler的原因。
二、ThreadLocal 基本使用
ThreadLocal是一個線程內部的數據存儲類,通過它可以在指定的線程中存儲數據,數據存儲以后,只有指定線程中可以獲取到存儲的數據,對於其它線程來說無法獲取到數據。一般開發情景中我們用不到ThreadLocal,但是在一些非常復雜或者特殊的情景中, 通過ThreadLocal可以輕松地實現一些看起來很復雜的功能。
在Android的系統機制中,以下機制中都使用到了ThreadLocal:Looper、ActivityThread、ActivityManagerService。
一般來說,當我們管理數據的時候是以線程為作用域並且不同線程管理不同的數據副本的時候,就可以考慮使用ThreadLocal。ThreadLocal的作用就是提供了一個全局的哈希表,用於實現指定線程的數據控制。
具體到ThreadLocal的使用場景,一般可以概況為,當某些數據是以線程為作用域並且不同線程具有不同的數據副本的時候,就可以考慮采用ThreadLocal。
下面是使用ThreadLocal的最簡單的例子:
public class ThreadLocalTest { static ThreadLocal threadLocal = new ThreadLocal(); public static void main(String[] args) { threadLocal.set(true); System.out.println("Main ThreadLocal Value = " + threadLocal.get()); new Thread(new Runnable() { @Override public void run() { threadLocal.set(false); System.out.println("ThreadLocal_1 Value = " + threadLocal.get()); } }).start(); new Thread(new Runnable() { @Override public void run() { System.out.println("ThreadLocal_2 Value = " + threadLocal.get()); } }).start(); } }
輸出的結果如下:
Main ThreadLocal Value = true ThreadLocal_1 Value = false ThreadLocal_2 Value = null
可以看出,雖然在不同線程中訪問的是同一個ThreadLocal對象,但是它們通過ThreadLocal來獲取到的值卻是不一樣的,這就是ThreadLocal的奇妙之處。
三、ThreadLocal源碼

/** * This class provides thread-local variables. These variables differ from * their normal counterparts in that each thread that accesses one (via its * {@code get} or {@code set} method) has its own, independently initialized * copy of the variable. {@code ThreadLocal} instances are typically private * static fields in classes that wish to associate state with a thread (e.g., * a user ID or Transaction ID). * * <p>For example, the class below generates unique identifiers local to each * thread. * A thread's id is assigned the first time it invokes {@code ThreadId.get()} * and remains unchanged on subsequent calls. * <pre> * import java.util.concurrent.atomic.AtomicInteger; * * public class ThreadId { * // Atomic integer containing the next thread ID to be assigned * private static final AtomicInteger nextId = new AtomicInteger(0); * * // Thread local variable containing each thread's ID * private static final ThreadLocal<Integer> threadId = * new ThreadLocal<Integer>() { * @Override protected Integer initialValue() { * return nextId.getAndIncrement(); * } * }; * * // Returns the current thread's unique ID, assigning it if necessary * public static int get() { * return threadId.get(); * } * } * </pre> * <p>Each thread holds an implicit reference to its copy of a thread-local * variable as long as the thread is alive and the {@code ThreadLocal} * instance is accessible; after a thread goes away, all of its copies of * thread-local instances are subject to garbage collection (unless other * references to these copies exist). * * @author Josh Bloch and Doug Lea * @since 1.2 */ public class ThreadLocal<T> { /** * ThreadLocals rely on per-thread linear-probe hash maps attached * to each thread (Thread.threadLocals and * inheritableThreadLocals). The ThreadLocal objects act as keys, * searched via threadLocalHashCode. This is a custom hash code * (useful only within ThreadLocalMaps) that eliminates collisions * in the common case where consecutively constructed ThreadLocals * are used by the same threads, while remaining well-behaved in * less common cases. */ private final int threadLocalHashCode = nextHashCode(); /** * The next hash code to be given out. Updated atomically. Starts at * zero. */ private static AtomicInteger nextHashCode = new AtomicInteger(); /** * The difference between successively generated hash codes - turns * implicit sequential thread-local IDs into near-optimally spread * multiplicative hash values for power-of-two-sized tables. */ private static final int HASH_INCREMENT = 0x61c88647; /** * Returns the next hash code. */ private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } /** * Returns the current thread's "initial value" for this * thread-local variable. This method will be invoked the first * time a thread accesses the variable with the {@link #get} * method, unless the thread previously invoked the {@link #set} * method, in which case the {@code initialValue} method will not * be invoked for the thread. Normally, this method is invoked at * most once per thread, but it may be invoked again in case of * subsequent invocations of {@link #remove} followed by {@link #get}. * * <p>This implementation simply returns {@code null}; if the * programmer desires thread-local variables to have an initial * value other than {@code null}, {@code ThreadLocal} must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * * @return the initial value for this thread-local */ protected T initialValue() { return null; } /** * Creates a thread local variable. The initial value of the variable is * determined by invoking the {@code get} method on the {@code Supplier}. * * @param <S> the type of the thread local's value * @param supplier the supplier to be used to determine the initial value * @return a new thread local variable * @throws NullPointerException if the specified supplier is null * @since 1.8 */ public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) { return new SuppliedThreadLocal<>(supplier); } /** * Creates a thread local variable. * @see #withInitial(java.util.function.Supplier) */ public ThreadLocal() { } /** * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * * @return the current thread's value of this thread-local */ public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); } /** * Variant of set() to establish initialValue. Used instead * of set() in case user has overridden the set() method. * * @return the initial value */ private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; } /** * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } /** * Removes the current thread's value for this thread-local * variable. If this thread-local variable is subsequently * {@linkplain #get read} by the current thread, its value will be * reinitialized by invoking its {@link #initialValue} method, * unless its value is {@linkplain #set set} by the current thread * in the interim. This may result in multiple invocations of the * {@code initialValue} method in the current thread. * * @since 1.5 */ public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); if (m != null) m.remove(this); } /** * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; } /** * Create the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @param firstValue value for the initial entry of the map */ void createMap(Thread t, T firstValue) { t.threadLocals = new ThreadLocalMap(this, firstValue); } /** * Factory method to create map of inherited thread locals. * Designed to be called only from Thread constructor. * * @param parentMap the map associated with parent thread * @return a map containing the parent's inheritable bindings */ static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { return new ThreadLocalMap(parentMap); } /** * Method childValue is visibly defined in subclass * InheritableThreadLocal, but is internally defined here for the * sake of providing createInheritedMap factory method without * needing to subclass the map class in InheritableThreadLocal. * This technique is preferable to the alternative of embedding * instanceof tests in methods. */ T childValue(T parentValue) { throw new UnsupportedOperationException(); } /** * An extension of ThreadLocal that obtains its initial value from * the specified {@code Supplier}. */ static final class SuppliedThreadLocal<T> extends ThreadLocal<T> { private final Supplier<? extends T> supplier; SuppliedThreadLocal(Supplier<? extends T> supplier) { this.supplier = Objects.requireNonNull(supplier); } @Override protected T initialValue() { return supplier.get(); } } /** * ThreadLocalMap is a customized hash map suitable only for * maintaining thread local values. No operations are exported * outside of the ThreadLocal class. The class is package private to * allow declaration of fields in class Thread. To help deal with * very large and long-lived usages, the hash table entries use * WeakReferences for keys. However, since reference queues are not * used, stale entries are guaranteed to be removed only when * the table starts running out of space. */ static class ThreadLocalMap { /** * The entries in this hash map extend WeakReference, using * its main ref field as the key (which is always a * ThreadLocal object). Note that null keys (i.e. entry.get() * == null) mean that the key is no longer referenced, so the * entry can be expunged from table. Such entries are referred to * as "stale entries" in the code that follows. */ static class Entry extends WeakReference<ThreadLocal<?>> { /** The value associated with this ThreadLocal. */ Object value; Entry(ThreadLocal<?> k, Object v) { super(k); value = v; } } /** * The initial capacity -- MUST be a power of two. */ private static final int INITIAL_CAPACITY = 16; /** * The table, resized as necessary. * table.length MUST always be a power of two. */ private Entry[] table; /** * The number of entries in the table. */ private int size = 0; /** * The next size value at which to resize. */ private int threshold; // Default to 0 /** * Set the resize threshold to maintain at worst a 2/3 load factor. */ private void setThreshold(int len) { threshold = len * 2 / 3; } /** * Increment i modulo len. */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } /** * Decrement i modulo len. */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); } /** * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. */ ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); table[i] = new Entry(firstKey, firstValue); size = 1; setThreshold(INITIAL_CAPACITY); } /** * Construct a new map including all Inheritable ThreadLocals * from given parent map. Called only by createInheritedMap. * * @param parentMap the map associated with parent thread. */ private ThreadLocalMap(ThreadLocalMap parentMap) { Entry[] parentTable = parentMap.table; int len = parentTable.length; setThreshold(len); table = new Entry[len]; for (int j = 0; j < len; j++) { Entry e = parentTable[j]; if (e != null) { @SuppressWarnings("unchecked") ThreadLocal<Object> key = (ThreadLocal<Object>) e.get(); if (key != null) { Object value = key.childValue(e.value); Entry c = new Entry(key, value); int h = key.threadLocalHashCode & (len - 1); while (table[h] != null) h = nextIndex(h, len); table[h] = c; size++; } } } } /** * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal<?> key) { int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; if (e != null && e.get() == key) return e; else return getEntryAfterMiss(key, i, e); } /** * Version of getEntry method for use when key is not found in * its direct hash slot. * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) { Entry[] tab = table; int len = tab.length; while (e != null) { ThreadLocal<?> k = e.get(); if (k == key) return e; if (k == null) expungeStaleEntry(i); else i = nextIndex(i, len); e = tab[i]; } return null; } /** * Set the value associated with key. * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal<?> key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); if (k == key) { e.value = value; return; } if (k == null) { replaceStaleEntry(key, value, i); return; } } tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); } /** * Remove the entry for key. */ private void remove(ThreadLocal<?> key) { Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { if (e.get() == key) { e.clear(); expungeStaleEntry(i); return; } } } /** * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e; // Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i; // Find either the key or trailing null slot of run, whichever // occurs first for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); // If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. if (k == key) { e.value = value; tab[i] = tab[staleSlot]; tab[staleSlot] = e; // Start expunge at preceding stale entry if it exists if (slotToExpunge == staleSlot) slotToExpunge = i; cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; } // If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; } // If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value); // If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); } /** * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length; // expunge entry at staleSlot tab[staleSlot].value = null; tab[staleSlot] = null; size--; // Rehash until we encounter null Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; tab[i] = null; size--; } else { int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null; // Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; } /** * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: {@code log2(n)} cells are scanned, * unless a stale entry is found, in which case * {@code log2(table.length)-1} additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; } /** * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. */ private void rehash() { expungeStaleEntries(); // Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); } /** * Double the capacity of the table. */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0; for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } } setThreshold(newLen); size = count; table = newTab; } /** * Expunge all stale entries in the table. */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } } } }
ThreadLocal 暴露了5個基本的操作和構造方法,主要的功能有:構造方法、設值方法、取值方法和資源回收;
1. 構造方法
ThreadLocal 是一個泛型類,只提供了一個構造方法,通過泛型可以指定要存儲的值的類型;這個構造方法通常可以單獨使用,也可以配合initialValue方法在實例化對象時提供一個初始值。
2.設值方法set
保存數據可以使用set方法,多次調用set方法不會保存多個數據,而是會覆蓋掉。一個ThreadLocal只能保存一個數據:
public void set(T value) { Thread t = Thread.currentThread(); // 獲取當前線程 ThreadLocalMap map = getMap(t); // 拿到當前線程中的ThreadLocalMap if (map != null) map.set(this, value); // 線程中存在ThreadLocalMap,設值 else createMap(t, value); // 線程中不存在ThreadLocalMap,創建后再設值 }
3.取值方法get
在沒有使用set方法設值之前,調用get方法獲取到的值將是initialValue方法設置的值(如果此方法未被覆蓋則返回null)。調用set方法設值之后,返回的就是設置的值。
public T get() { Thread t = Thread.currentThread(); // 獲取當前線程 ThreadLocalMap map = getMap(t); // 拿到當前線程保存的ThreadLocalMap if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); // 這里傳入的this就是當前的ThreadLocal對象,拿到ThreadLocal對應的值 if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; // 拿到ThreadLocal的值 return result; } } return setInitialValue(); // 調用setInitialValue方法返回初始值 }
4.資源回收remove
當我們不再需要保存的數據時,應該通過remove方法將當前線程中保存的值移除掉使對象得到GC(調用remove方法將把ThreadLocal對象從當前線程的ThreadLocalMap移除):
public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); // 拿到當前線程中的ThreadLocalMap if (m != null) { m.remove(this); // 從ThreadLocalMap移除key為當前ThreadLocal對象的記錄 } }
調用remove方法會清空使用set方法設置的值,此時如果再次調用了get方法,由於ThreadLocal對應的記錄已經不存在,所以將會執行return setInitialValue();這段代碼,這里將會調用initialValue方法從而返回初始值。
四、ThreadLocal 內存泄漏問題
ThreadLocalMap中的Entry中,ThreadLocal作為key,是作為弱引用進行存儲的。當ThreadLocal不再被作為強引用持有時,會被GC回收,這時ThreadLocalMap對應的ThreadLocal就變成了null。而根據文檔所敘述的,當key == null時,這時就可以默認該鍵不再被引用,該Entry就可以被直接清除,該清除行為會在Entry本身的set()/get()/remove()中被調用。
一般情況下,線程在執行結束時,自然也會消除其對value的引用,使得Value能夠被GC回收。但是在使用線程池或者其他特殊情況下的時候,會存在線程復用的情況,這時候Value的值依然能獲取到,可能就存在內存泄漏的隱患了。所以我們推薦通過手動將value的值設置為null(即調用ThreadLocal.remove()方法)以規避內存泄漏的風險。
五、推薦資料
2. 《Java並發編程的藝術》