[CV] OpenPose on TensorFlow


Official page: https://github.com/CMU-Perceptual-Computing-Lab/openpose

OpenPose would not be possible without the CMU Panoptic Studio dataset.

 

原文鏈接: https://blog.csdn.net/surserrr/java/article/details/89501491

tensorflow版本: github.com/ildoonet/tf-pose-estimation

keras版本: github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation

pytorch版本: github.com/Hzzone/pytorch-openpose

keras版本的模型是原論文模型轉碼過來的,tensorflow是自己訓練的模型。

在自己的圖片上簡單測試了一下,keras效果最好,pytorch版本的效果最差。

但是代碼是pytorch的最簡潔。

不同模型的分辨率參考

Download Tensorflow Graph File(pb file)

Before running demo, you should download graph files. You can deploy this graph on your mobile or other platforms.

  • cmu (trained in 656x368)
  • mobilenet_thin (trained in 432x368)
  • mobilenet_v2_large (trained in 432x368)
  • mobilenet_v2_small (trained in 432x368)

 

復現CAFFE版本

OpenPose - Installation

A 2020 Guide for Installing OpenPose

Openpose 搭建過程 (基於Ubuntu18.04) [實踐復現] 

怕與Tensorflow的配置相沖突。

 

 

復現TF PY版本

Ref: 人體姿態識別--Openpose+Tensorflow 

TensorRT相關問題:

From TensorFlow 1.14.1, did the switch occur. When I say switch I mean:

import tensorflow.contrib.tensorrt as trt (used in ≤ TensorFlow 1.13.1 ) -->
from tensorflow.python.compiler.tensorrt import trt (TensorFlow ≥ 1.14.1)

tf.contrib doesn't exist in 2.0.

Ubuntu 18.04 的配置參考。

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
$ nvidia-smi Sat May 16 17:28:03 2020 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A | | N/A 51C P0 N/A / N/A | 285MiB / 2002MiB | 3% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1573 G /usr/lib/xorg/Xorg 156MiB | | 0 1740 G /usr/bin/gnome-shell 58MiB | | 0 2218 G ...AAAAAAAAAAAAAAgAAAAAAAAA --shared-files 70MiB | +-----------------------------------------------------------------------------+

演示效果如下,切忌不可打開其他視頻應用搶占GPU資源。

 

 

復現TF C++版本

姿態估計 | OpenPose Plus值得期待

 

 

遷移學習

其實就是如何 retrain to improve的問題。

https://github.com/ildoonet/tf-pose-estimation/blob/master/etcs/training.md 

原始數據庫:http://domedb.perception.cs.cmu.edu/

/* implement */

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM