[CV] OpenPose on TensorFlow


Official page: https://github.com/CMU-Perceptual-Computing-Lab/openpose

OpenPose would not be possible without the CMU Panoptic Studio dataset.

 

原文链接: https://blog.csdn.net/surserrr/java/article/details/89501491

tensorflow版本: github.com/ildoonet/tf-pose-estimation

keras版本: github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation

pytorch版本: github.com/Hzzone/pytorch-openpose

keras版本的模型是原论文模型转码过来的,tensorflow是自己训练的模型。

在自己的图片上简单测试了一下,keras效果最好,pytorch版本的效果最差。

但是代码是pytorch的最简洁。

不同模型的分辨率参考

Download Tensorflow Graph File(pb file)

Before running demo, you should download graph files. You can deploy this graph on your mobile or other platforms.

  • cmu (trained in 656x368)
  • mobilenet_thin (trained in 432x368)
  • mobilenet_v2_large (trained in 432x368)
  • mobilenet_v2_small (trained in 432x368)

 

复现CAFFE版本

OpenPose - Installation

A 2020 Guide for Installing OpenPose

Openpose 搭建过程 (基于Ubuntu18.04) [实践复现] 

怕与Tensorflow的配置相冲突。

 

 

复现TF PY版本

Ref: 人体姿态识别--Openpose+Tensorflow 

TensorRT相关问题:

From TensorFlow 1.14.1, did the switch occur. When I say switch I mean:

import tensorflow.contrib.tensorrt as trt (used in ≤ TensorFlow 1.13.1 ) -->
from tensorflow.python.compiler.tensorrt import trt (TensorFlow ≥ 1.14.1)

tf.contrib doesn't exist in 2.0.

Ubuntu 18.04 的配置参考。

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
$ nvidia-smi Sat May 16 17:28:03 2020 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A | | N/A 51C P0 N/A / N/A | 285MiB / 2002MiB | 3% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1573 G /usr/lib/xorg/Xorg 156MiB | | 0 1740 G /usr/bin/gnome-shell 58MiB | | 0 2218 G ...AAAAAAAAAAAAAAgAAAAAAAAA --shared-files 70MiB | +-----------------------------------------------------------------------------+

演示效果如下,切忌不可打开其他视频应用抢占GPU资源。

 

 

复现TF C++版本

姿态估计 | OpenPose Plus值得期待

 

 

迁移学习

其实就是如何 retrain to improve的问题。

https://github.com/ildoonet/tf-pose-estimation/blob/master/etcs/training.md 

原始数据库:http://domedb.perception.cs.cmu.edu/

/* implement */

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM