什么是最近鄰?
最近鄰可以用於分類和回歸,這里以分類為例。給定一個訓練集,對新輸入的實例,在訓練數據集中找到與該實例最接近的k個實例,這k個實例的多數屬於某個類,就把該輸入實例分為這個類
最近鄰模型的三個基本要素?
距離度量、K值的選擇和分類決策規則。
距離度量:一般是歐式距離,也可以是Lp距離和曼哈頓距離。
下面是一個具體的例子:
k值怎么選擇?
接下來是代碼實現:
from __future__ import print_function, division import numpy as np from mlfromscratch.utils import euclidean_distance class KNN(): """ K Nearest Neighbors classifier. Parameters: ----------- k: int The number of closest neighbors that will determine the class of the sample that we wish to predict. """ def __init__(self, k=5): self.k = k def _vote(self, neighbor_labels): """ Return the most common class among the neighbor samples """ counts = np.bincount(neighbor_labels.astype('int')) return counts.argmax() def predict(self, X_test, X_train, y_train): y_pred = np.empty(X_test.shape[0]) # Determine the class of each sample for i, test_sample in enumerate(X_test): # Sort the training samples by their distance to the test sample and get the K nearest idx = np.argsort([euclidean_distance(test_sample, x) for x in X_train])[:self.k] # Extract the labels of the K nearest neighboring training samples k_nearest_neighbors = np.array([y_train[i] for i in idx]) # Label sample as the most common class label y_pred[i] = self._vote(k_nearest_neighbors) return y_pred
其中一些numpy中的函數用法:
numpy.bincount()
numpy.argmax():
numpy.argsort():返回排序后數組的索引
接着是其中使用到了euclidean_distance():
def euclidean_distance(x1, x2): """ Calculates the l2 distance between two vectors """ distance = 0 # Squared distance between each coordinate for i in range(len(x1)): distance += pow((x1[i] - x2[i]), 2) return math.sqrt(distance)
這里使用的是l2距離。
運行的主函數:
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from mlfromscratch.utils import train_test_split, normalize, accuracy_score from mlfromscratch.utils import euclidean_distance, Plot from mlfromscratch.supervised_learning import KNN def main(): data = datasets.load_iris() X = normalize(data.data) y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) clf = KNN(k=5) y_pred = clf.predict(X_test, X_train, y_train) accuracy = accuracy_score(y_test, y_pred) print ("Accuracy:", accuracy) # Reduce dimensions to 2d using pca and plot the results Plot().plot_in_2d(X_test, y_pred, title="K Nearest Neighbors", accuracy=accuracy, legend_labels=data.target_names) if __name__ == "__main__": main()
結果:
Accuracy: 0.9795918367346939
理論知識:來自統計學習方法