PyTorch有多種方法搭建神經網絡,下面識別手寫數字為例,介紹4種搭建神經網絡的方法。
方法一:torch.nn.Sequential()
torch.nn.Sequential類是torch.nn中的一種序列容器,參數會按照我們定義好的序列自動傳遞下去。
import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d(1, 16, 5, 1, 2), # output shape (16, 28, 28) nn.ReLU(), nn.MaxPool2d(2), # output shape (16, 14, 14) ) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14) nn.ReLU(), nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.linear = nn.Linear(32*7*7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.linear(x) return output net = Net() print(net)
運行結果:
注意:這樣做有一個問題,每一個層是沒有名稱,默認的是以0、1、2、3來命名,從上面的運行結果也可以看出。
方法二:torch.nn.Sequential() 搭配 collections.OrderDict()
import torch.nn as nn from collections import OrderedDict # OrderedDict是字典的子類,可以記住元素的添加順序 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1, 16, 5, 1, 2)), ('ReLU1', nn.ReLU()), ('pool1', nn.MaxPool2d(2)), ])) self.conv2 = nn.Sequential(OrderedDict([ ('conv2', nn.Conv2d(16, 32, 5, 1, 2)), ('ReLU2', nn.ReLU()), ('pool2', nn.MaxPool2d(2)), ])) self.linear = nn.Linear(32*7*7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.linear(x) return output net = Net() print(net)
運行結果:
從上面的結果中可以看出,這個時候每一個層都有了自己的名稱,但是此時需要注意,我們並不能夠通過名稱直接獲取層,依然只能通過索引index,即net.conv1[1] 是正確的,net.conv1['ReLU1']是錯誤的。這是因為torch.nn.Sequential()只支持index訪問。
方法三:torch.nn.Sequential() 搭配 add_module()
import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Sequential() self.conv1.add_module('conv1', nn.Conv2d(1, 16, 5, 1, 2)) self.conv1.add_module('ReLU1', nn.ReLU()) self.conv1.add_module('pool1', nn.MaxPool2d(2)) self.conv2 = nn.Sequential() self.conv2.add_module('conv2', nn.Conv2d(16, 32, 5, 1, 2)) self.conv2.add_module('ReLU2', nn.ReLU()) self.conv2.add_module('pool2', nn.MaxPool2d(2)) self.linear = nn.Linear(32*7*7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.linear(x) return output net = Net() print(net)
運行結果:
方法四
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, 5, 1, 2) self.conv2 = nn.Conv2d(16, 32, 5, 1, 2) self.linear = nn.Linear(32*7*7, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) output = self.linear(x) return output net = Net() print(net)
運行結果:
參考資料
[1] pytorch教程之nn.Sequential類詳解——使用Sequential類來自定義順序連接模型
[3] 《深度學習之PyTorch實戰計算機視覺》