論文閱讀(一) Indoor Coverage Path Planning: Survey, Implementation, Analysis


Indoor Coverage Path Planning: Survey, Implementation, Analysis

概況:講的是覆蓋路徑規划(CPP)算法,本文中介紹了六種算法,並進行了深入的比較,在550多個室內地圖中做了實驗。

 

一、介紹

本文是基於6\8論文的補充。

本文提供了廣泛的覆蓋路徑規划方法,包括一種精確的單元分解方法、基於三單元網格的規划方法、一種輪廓線驅動方法和一種藝術畫廊問題的變體。(不知道准不准確,英文是one exact cell decomposition method, three cell grid-based planners, one contour line-driven approach and one variant of the art gallery problem)

區分了在線算法(基於傳感器的覆蓋算法)和離線算法,本文的工作集中在離線算法上,這些算法可以利用環境的現成的地圖。

 

二、相關的工作

總結討論了6\8論文以及其他比較常見的算法:

  經典的網格划分方法(論文10-12):依賴於多邊形形狀和障礙物。解決這一問題的方法:Morse-based網格划分方法(論文13)。

  Landmark-based網格划分方法(論文14):適用於多種拓撲結構。

  Boustrophedon網格划分方法(論文11\15)

  旋轉掃描單元格的Boustrophedon網格划分方法(論文16)  

  Wavefront 算法(論文17):定義了起點和目標點,接近目標前將這撥錢

  Spanning Tree算法(論文18):將自由空間分割為巨型的單元,在每個巨型單元下有四個小單元,可以利用搜索樹來覆蓋這些單元。

  Neural Network-based算法(論文19):受生物學啟發,將網格視作神經元,通過相鄰網格的激活狀態訪問網格。

  全覆蓋問題被視作Art Gallery Problem(論文20)或者Watchman Tour Problem 。

  在組合整數線性規划方法的基礎上,利用重加權凸松弛擴大可處理規模的一種新方法(論文9)

從中挑選6種全覆蓋路徑算法進行評價。

 

三、方法

1、預處理

(1)地圖分割。看作Traveling Salesman Problem,這篇論文的作者此前寫過一篇相關論文7 。

(2)房間方向規范化。牆壁對准的啟發式算法(論文6\12\16)、Canny邊緣檢測算法、CV的Hough直線檢測算法(論文22)

(3)覆蓋區域: skeleton or Voronoi graph 論文23\24。網格最多為l=√2·rq 。

2、  Boustrophedon Coverage Path Planning 論文11\15 。水平掃描,到達臨界點時執行合並或者分割。

3、Grid-based Traveling Salesman Coverage Path Planning 。基於旅行商TSP問題。與Concorde solver完全一致(論文25),或與遺傳算法或簡單而快速的最近鄰類似。

4、Neural Network-based Coverage Path Planning 。基於神經網絡的全覆蓋算法。結合生物學的神經元連接8個鄰居,排斥牆壁和障礙物。論文19

5、Grid-based Local Energy Minimization。局部能量最小驅動。 論文5

6、Contour Line-based Coverage Path Planning。等高線法。論文7\26

7、Convex Sensor Placement Coverage Path Planning。凸傳感覆蓋算法。論文9

 

四、評估

1、覆蓋率 96-99%

2、傳感器視野

3、實測結果

 

 

【延伸論文】

[1] F. Yasutomi, M. Yamada, and K. Tsukamoto, “Cleaning robot control,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Apr. 1988, pp. 1839–1841.
[2] C. Hofner and G. Schmidt, “Path planning and guidance techniques for an autonomous mobile cleaning robot,” Robotics and Autonomous Systems, vol. 14, no. 23, pp. 199 – 212, 1995.
[3] M. Bosse, N. Nourani-Vatani, and J. Roberts, “Coverage Algorithms for an Under-actuated Car-Like Vehicle in an Uncertain Environment,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Apr. 2007, pp. 698–703.
[4] M. Ollis and A. Stentz, “Vision-based perception for an automated harvester,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, Sept. 1997, pp. 1838– 1844.
[5] R. Bormann, J. Hampp, and M. Hagele, “New Brooms Sweep Clean ¨ - An Autonomous Robotic Cleaning Assistant for Professional Office Cleaning,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2015.
[6] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S092188901300167X
[7] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hagele, “Room ¨ Segmentation: Survey, Implementation, and Analysis,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2016.

[8] H. Choset, “Coverage for robotics - A survey of recent results,” Annals of mathematics and artificial intelligence, vol. 31, no. 1, pp. 113–126, 2001. [Online]. Available: http://www.springerlink.com/index/q346pp34036143pg.pdf
[9] M. A. Arain, M. Cirillo, V. H. Bennetts, E. Schaffernicht,M. Trincavelli, and A. J. Lilienthal, “Efficient measurement planning for remote gas sensing with mobile robots,” in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 3428–3434. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7139673/
[10] J.-C. Latombe, “Exact Cell Decomposition,” in Robot Motion Planning, ser. The Springer International Series in Engineering and Computer Science. Springer US, 1991, no. 124, pp. 200–247, dOI: 10.1007/978-1-4615-4022-9 5. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-1-4615-4022-9 5
[11] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular decomposition,” in Proceedings of the International Conference on Field and Service Robotics. Springer, 1998, pp. 203–209. [Online]. Available: http://link.springer.com/chapter/10.1007/978-1-4471-1273-0 32
[12] T. Oksanen and A. Visala, “Coverage path planning algorithms for agricultural field machines,” Journal of Field Robotics, vol. 26, no. 8, pp. 651–668, Aug. 2009. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/rob.20300/abstract
[13] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull,“Morse Decompositions for Coverage Tasks,” The International Journal of Robotics Research, vol. 21, no. 4, pp. 331–344, Apr. 2002. [Online]. Available: http://journals.sagepub.com/doi/abs/
10.1177/027836402320556359
[14] S. C. Wong and B. A. MacDonald, “A topological coverage algorithm for mobile robots,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, Oct. 2003, pp. 1685–1690.
[15] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, “Exact cellular decompositions in terms of critical points of morse functions,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 3. IEEE, 2000, pp. 2270–2277. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/846365/
[16] W. H. Huang, “Optimal line-sweep-based decompositions for coverage algorithms,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 1, 2001, pp. 27–32. [17] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta, “Planning Paths of Complete Coverage of an Unstructured Environment by a Mobile Robot,” in In Proceedings of International Conference on Advanced Robotics, 1993, pp. 533–538. [18] Y. Gabriely and E. Rimon, “Spiral-STC: an on-line coverage algorithm of grid environments by a mobile robot,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 1,2002, pp. 954–960.
[19] S. X. Yang and C. Luo, “A neural network approach to complete coverage path planning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 718–724, Feb. 2004.
[20] T. Shermer, “Recent results in art galleries,” Proceedings of the IEEE, vol. 80, no. 9, pp. 1384–1399, Sep 1992. [21] “Room segmentation dataset and software,” http://wiki.ros.org/ipa room segmentation.
[22] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library. ” O’Reilly Media, Inc.”, 2008.
[23] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica, vol. 2, no. 1-4, pp. 153–174, 1987.
[24] H. Choset, “Incremental construction of the generalized voronoi diagram, the generalized voronoi graph, and the hierarchical generalized voronoi graph,” in Proceedings of the First CGC Workshop on Computational Geometry, 1997.
[25] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde TSP solver,” http://www.math.uwaterloo.ca/tsp/concorde.html, 2006. [26] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, Feb. 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0004370297000787
[27] “Documentation on ipa room exploration software,” http://wiki.ros. org/ipa room exploration.

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM