1. https://zhuanlan.zhihu.com/p/34042498 深度解密換臉應用Deepfake
2. 在 1 里面提到的PixelShuffle,具體見參考3:
https://mathematica.stackexchange.com/questions/181587/how-to-define-a-pixelshuffle-layer
一邊Upsample一邊Convolve:Efficient Sub-pixel-convolutional-layers詳解
https://oldpan.me/archives/upsample-convolve-efficient-sub-pixel-convolutional-layers
正常情況下,卷積操作會使feature map的高和寬變小。但當我們的stride=(1/r) < 1時,可以讓卷積后的feature map的高和寬變大——即分辨率增大,這個新的操作叫做sub-pixel convolution,具體原理可以看PixelShuffle《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
》的論文。
pixelshuffle算法的實現流程如上圖,其實現的功能是:將一個H×W的低分辨率輸入圖像(LowResolution),通過Sub-pixel操作將其變為rH x rW的高分辨率圖像(High Resolution)。
在1中提到的PG-GAN
4. PyTorch學習筆記(10)——上采樣和PixelShuffle
https://blog.csdn.net/g11d111/article/details/82855946
5. faceswap blog
https://blog.csdn.net/weixin_41965898/article/details/84930788
參考:
1. CNN概念之上采樣,反卷積,Unpooling概念解釋
https://blog.csdn.net/g11d111/article/details/82350563
2. Visualizing and Understanding Convolutional Networks
https://arxiv.org/pdf/1311.2901v3.pdf
3. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
【這篇文章的核心—Efficient Sub-pixel Convolution】
4.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
5【超分辨率】Efficient Sub-Pixel Convolutional Neural Network【Sub-Pixel / PS: periodic shuffling】
https://blog.csdn.net/shwan_ma/article/details/78440394
6. PixelShuffle的含義