最大比率傳輸(Maximum Ratio Transmission, MRT)原理分析


轉載請注明出處。

最大比率發射(Maximum Ratio Transmission, MRT)是文獻中經常看見的一個詞,今天就在這里做一下筆記。
參考文獻為:T. K. Y. Lo, "Maximum ratio transmission," in IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458-1461, Oct. 1999. doi: 10.1109/26.795811

1. 背景

無線通信系統受到的最不利的傳播影響是多徑衰落。天線分集技術是無線通信工程師對抗多徑衰落的常用方法之一。一種經典的組合技術是最大比率組合(MRC),MRC中來自接收天線單元的信號被加權,使得其和的信噪比(SNR)最大。目前為止,MRC技術僅用於接收應用處理中。隨着越來越多的無線業務的出現,越來越多的應用可能需要在發射機或發射機和接收機處進行分集以對抗嚴重的衰落效應。因此提出了一些方案,比如延遲發射分集方案。

然而,這些發射分集技術建立在目標的基礎上,而不是最大化信噪比。也就是說,就信噪比性能而言,它們是次優的。因此,本文將從概念和原理上建立最大傳動比(MRT)的框架。它可以看作是多發射天線和多接收天線最大比值算法的推廣。它還為系統利用發射分集和接收分集獲得最佳性能提供了參考。

2. 系統模型

發射端配備 \(K\) 根天線,接收端配備 \(L\) 根發射天線,其系統模型如圖1所示:

圖1. 系統模型

假設其信道 \(\pmb{H}\) 是統計信道,可以表示為:

這里 \(h_{pk}\) 表示第 \(k\) 根天線和第 \(p\) 根天線的信道系數。

\[{\pmb{x}} = {\boldsymbol{Hs}} + {\boldsymbol{n}} \quad \quad \quad \quad \quad(2) \]

這里發射的信號 \(\boldsymbol{s}\) 表示為

\[{\pmb{s}} = {[{s_1} \cdots {s_K}]^{\rm T}} = c{[{v_1} \cdots {v_K}]^{\rm T}} \]

\({\pmb{n}} = {[{n_1} \cdots {n_L}]^{\rm T}}\) 表示加性高斯白噪聲。

3. 最大比率發射(MRT)原理

為了從信道矩陣生成 \(K \times 1\) 的傳輸權重向量,需要進行線性變換,即:

\[{\pmb{v}} = \frac{1}{a}{({\pmb{gH}})^{\rm H}} \]

這里 \({\pmb{g}} = [{g_1} \cdots {g_L}]\)。傳輸信號向量就可以表示為:

\[{\pmb{s}} = \frac{c}{a}{({\pmb{gH}})^{\rm H}} \]

歸一化因子 \(a\) 必須滿足:

因此,接收信號變為:

\[{\pmb{x}} = \frac{c}{a}{\pmb{H}}{({\pmb{gH}})^{\rm H}} + {\pmb{n}} \]

為了估計發送符號,必須將接收權重向量 \(\pmb{w}\) 應用於接收信號向量 \(\pmb{x}\),如果將 \(\pmb{w}\) 設為 \(\pmb{g}\),那么估計的符號為:

\[\tilde c = {\pmb{gx}} = \frac{c}{a}{\pmb{gH}}{({\pmb{gH}})^{\rm H}} + {\pmb{gH}} = ac + {\pmb{gn}} \]

總的SNR為:

\[\gamma = \frac{{{a^2}}}{{{\pmb{g}}{{\pmb{g}}^{\rm H}}}}{\gamma _0} = \frac{{{a^2}{\gamma _0}}}{{\sum\limits_{p = 1}^L {{{\left| {{g_p}} \right|}^2}} }}\quad \quad \quad\quad\quad(10) \]

這里 \({\gamma _0} = \frac{{\sigma _c^2}}{{\sigma _n^2}}\) 表示單發射天線的平均SNR,(即沒有分集)。

從(10)式可知,總SNR和 \(\pmb{g}\) 有關,因此,可以通過選擇合適的 \(\pmb{g}\) 來最大化總的SNR。
由於 \(h_{pk}\) 假設在統計意義上是相同的,所以最大化SNR必須滿足 \(\left| {{g_1}} \right| = \left| {{g_2}} \right| = \cdots = \left| {{g_L}} \right|\)。在不改變問題性質的情況下,為了簡單起見,可以設置 \(\left| {{g_p}} \right| = 1\),因此,總的SNR可以表示為:

\[\gamma = \frac{{{a^2}}}{L}{\gamma _0} \quad \quad\quad \quad\quad \quad (11) \]

所以,當 \({{a^2}}\) 最大時,(11)式就是最大值。那么 \({{a^2}}\) 時就有:

\[{({g_p}g_q^*)^*} = \frac{{\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} }}{{\left| {\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} } \right|}} \]

此時,有:

\[{a^2} = \sum\limits_{p = 1}^L {\sum\limits_{q = 1}^L {\left| {\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} } \right|} } \]

4. 討論

往期精選:
[1] 線性降維:主成分分析PCA原理分析與仿真驗證

[2] 5G+AI:有哪些新的研究方向和新范式?

[3] 簡述3D點雲配准算法

[4] 5G為人工智能與工業互聯網賦能|79頁高清PPT

[5] 智能算法|以動物命名的算法

[6] 一份超全面的機器學習公共數據集

[7] 矩陣填充|奇異值閾值算法

[8] 可重構/大規模智能反射表面reconfigurable/large intelligent surface綜述

[9] 迭代硬閾值類算法總結||IHT/NIHT/CGIHT/HTP

[10] 軟閾值迭代算法(ISTA)和快速軟閾值迭代算法(FISTA)

[11] 伍德伯里矩陣恆等式(Woodbury matrix identity)

[12] 壓縮感知:一種新型亞采樣技術

更多精彩內容請關注訂閱號優化與算法和加入QQ討論群1032493483獲取更多資料


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM