寫文章不易,如果您覺得此文對您有所幫助,請幫忙點贊、評論、收藏,感謝您!
一. 仿射變換介紹:
請參考:圖解圖像仿射變換:https://www.cnblogs.com/wojianxin/p/12518393.html
圖像仿射變換之圖像平移:https://www.cnblogs.com/wojianxin/p/12519498.html
二. 仿射變換 公式:

仿射變換過程,(x,y)表示原圖像中的坐標,(x',y')表示目標圖像的坐標 ↑
三. 實驗:利用我的上一篇文章(https://www.jianshu.com/p/1cfb3fac3798)的算法實現圖像仿射變換——圖像縮放
要實現其他功能的仿射變換,請讀者照葫蘆畫瓢,自行舉一反三:
實驗目標,將輸入圖像在x方向上放大至原來的1.5倍,在y方向上縮小為原來的0.6倍。並沿x軸負向移動30像素,y軸正向移動100像素。
實驗代碼:
1 import cv2 2 import numpy as np 3 4 # Affine Transformation 5 def affine(img, a, b, c, d, tx, ty): 6 H, W, C = img.shape 7 8 # temporary image 9 tem = img.copy() 10 img = np.zeros((H+2, W+2, C), dtype=np.float32) 11 img[1:H+1, 1:W+1] = tem 12 13 # get new image shape 14 H_new = np.round(H * d).astype(np.int) 15 W_new = np.round(W * a).astype(np.int) 16 out = np.zeros((H_new+1, W_new+1, C), dtype=np.float32) 17 18 # get position of new image 19 x_new = np.tile(np.arange(W_new), (H_new, 1)) 20 y_new = np.arange(H_new).repeat(W_new).reshape(H_new, -1) 21 22 # get position of original image by affine 23 adbc = a * d - b * c 24 x = np.round((d * x_new - b * y_new) / adbc).astype(np.int) - tx + 1 25 y = np.round((-c * x_new + a * y_new) / adbc).astype(np.int) - ty + 1 26 27 x = np.minimum(np.maximum(x, 0), W+1).astype(np.int) 28 y = np.minimum(np.maximum(y, 0), H+1).astype(np.int) 29 30 # assgin pixcel to new image 31 out[y_new, x_new] = img[y, x] 32 33 out = out[:H_new, :W_new] 34 out = out.astype(np.uint8) 35 36 return out 37 38 # Read image 39 image = cv2.imread("../paojie.jpg").astype(np.float32) 40 # Affine 41 out = affine(image, a=1.5, b=0, c=0, d=0.6, tx=-30, ty=100) 42 # Save result 43 cv2.imshow("result", out) 44 cv2.imwrite("out.jpg", out) 45 cv2.waitKey(0) 46 cv2.destroyAllWindows()
四. 實驗中的難點,晦澀難懂的代碼講解:
可以參考:https://www.cnblogs.com/wojianxin/p/12519498.html 或者
https://www.jianshu.com/p/1cfb3fac3798
五. 實驗結果:

原圖 ↑

仿射變換結果(x*1.5-30,y*0.6+100) ↑
六. 參考文獻:
https://www.jianshu.com/p/464370cd6408
七. 版權聲明:
未經作者允許,請勿隨意轉載抄襲,抄襲情節嚴重者,作者將考慮追究其法律責任,創作不易,感謝您的理解和配合!