# 背景
生產環境偶爾會有一些慢請求導致系統性能下降,吞吐量下降,下面介紹幾種優化建議。
# 方案
1、undertow替換tomcat
電子商務類型網站大多都是短請求,一般響應時間都在100ms,這時可以將web容器從tomcat替換為undertow,下面介紹下步驟:
1)增加pom配置
<dependency> <groupid>org.springframework.boot</groupid> <artifactid>spring-boot-starter-web</artifactid> <exclusions> <exclusion> <groupid>org.springframework.boot</groupid> <artifactid>spring-boot-starter-tomcat</artifactid> </exclusion> </exclusions> </dependency> <dependency> <groupid>org.springframework.boot</groupid> <artifactid>spring-boot-starter-undertow</artifactid> </dependency>
2)增加相關配置
server: undertow: direct-buffers: true io-threads: 4 worker-threads: 160
重新啟動可以在控制台看到容器已經切換為undertow了
2、緩存
將部分熱點數據或者靜態數據放到本地緩存或者redis中,如果有需要可以定時更新緩存數據
在代碼過程中我們很多代碼都不需要等返回結果,也就是部分代碼是可以並行執行,這個時候可以使用異步,最簡單的方案是使用springboot提供的@Async注解,當然也可以通過線程池來實現,下面簡單介紹下異步步驟。
1)pom依賴 一般springboot引入web相關依賴就行
<dependency> <groupid>org.springframework.boot</groupid> <artifactid>spring-boot-starter-web</artifactid> </dependency>
2)在啟動類中增加@EnableAsync注解
@EnableAsync @SpringBootApplication public class AppApplication { public static void main(String[] args) { SpringApplication.run(AppApplication.class, args); } }
3)需要時在指定方法中增加@Async注解,如果是需要等待返回值,則demo如下
@Async public Future<string> doReturn(int i){ try { // 這個方法需要調用500毫秒 Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } / 消息匯總 return new AsyncResult<>("異步調用"); }
4)如果有線程變量或者logback中的mdc,可以增加傳遞
import org.slf4j.MDC; import org.springframework.context.annotation.Configuration; import org.springframework.core.task.TaskDecorator; import org.springframework.scheduling.annotation.AsyncConfigurerSupport; import org.springframework.scheduling.annotation.EnableAsync; import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor; import java.util.Map; import java.util.concurrent.Executor; /** * @Description: */ @EnableAsync @Configuration public class AsyncConfig extends AsyncConfigurerSupport { @Override public Executor getAsyncExecutor() { ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); executor.setTaskDecorator(new MdcTaskDecorator()); executor.initialize(); return executor; } } class MdcTaskDecorator implements TaskDecorator { @Override public Runnable decorate(Runnable runnable) { Map<string, string> contextMap = MDC.getCopyOfContextMap(); return () -> { try { MDC.setContextMap(contextMap); runnable.run(); } finally { MDC.clear(); } }; } }
5)有時候異步需要增加阻塞
import lombok.extern.slf4j.Slf4j; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor; import java.util.concurrent.Executor; import java.util.concurrent.ThreadPoolExecutor; @Configuration @Slf4j public class TaskExecutorConfig { @Bean("localDbThreadPoolTaskExecutor") public Executor threadPoolTaskExecutor() { ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor(); taskExecutor.setCorePoolSize(5); taskExecutor.setMaxPoolSize(200); taskExecutor.setQueueCapacity(200); taskExecutor.setKeepAliveSeconds(100); taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool"); taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -> { if (!executor.isShutdown()) { try { Thread.sleep(300); executor.getQueue().put(r); } catch (InterruptedException e) { log.error(e.toString(), e); Thread.currentThread().interrupt(); } } } ); taskExecutor.initialize(); return taskExecutor; } }
4、業務拆分
可以將比較耗時或者不同的業務拆分出來提供單節點的吞吐量
5、集成消息隊列
有很多場景對數據實時性要求不那么強的,或者對業務進行業務容錯處理時可以將消息發送到kafka,然后延時消費。舉個例子,根據條件查詢指定用戶發送推送消息,這里可以時按時、按天、按月等等,這時就
原文:https://mp.weixin.qq.com/s/vHMMmV_F6kL8pKtK8IB6YA