有所更改,參數不求完備,但求實用。源碼參考D:\source\opencv-3.4.9\samples\cpp\cloning_demo.cpp
圖片下載地址 https://github.com/opencv/opencv_extra
此案例圖片具體位置 opencv_extra-master\testdata\cv\cloning。把cloning文件夾放到自己的工程目錄下。
【知識點1】
把一幅圖無縫融合到另一幅圖里,主要是seamlessClone() 的使用。
seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p, OutputArray blend, int flags);
注意需要三幅圖合為一幅圖,src與mask摳圖(邏輯與,尺寸一致),把摳出的圖融合到dst中的p位置處(摳出的圖尺寸≤dst圖)。p位置也是摳出的圖的中心。
3種融合模式flags:NORMAL_CLONE = 1,MIXED_CLONE = 2,MONOCHROME_TRANSFER = 3
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Normal_Cloning/"; //可更換Mixed_Cloning,Monochrome_Transfer目錄 string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "destination1.png"); string original_path3 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat destination = imread(original_path2, IMREAD_COLOR); Mat mask = imread(original_path3, IMREAD_COLOR); Mat result; Point p; p.x = destination.size().width / 2; p.y = destination.size().height / 2; seamlessClone(source, destination, mask, p, result, NORMAL_CLONE); //可更換MIXED_CLONE,MONOCHROME_TRANSFER imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知識點2】
對感興趣區域進行顏色調整。如下圖,花朵更鮮艷。主要是colorChange()函數的使用。
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/color_change/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; colorChange(source, mask, result, 1.5, .5, .5); //mask定位source中的roi區域,調整該區域顏色r,g,b imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知識點3】
消除高亮區域,illuminationChange()函數的使用。alpha,beta兩個參數共同決定消除高光后圖像的模糊程度(范圍0~2,0比較清晰,2比較模糊)
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Illumination_Change/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; illuminationChange(source, mask, result, 0.2f, 0.4f); //消除source中mask鎖定的高亮區域,后兩個參數0-2調整 imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知識點4】
紋理扁平化,邊緣檢測器選取的邊緣越少(選擇性越強),邊緣映射就越稀疏,扁平化效果就越明顯。textureFlattening()函數的使用。
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Texture_Flattening/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; textureFlattening(source, mask, result, 30, 45, 3); //對mask鎖定的source中的區域進行紋理扁平化,低閾值,高閾值,核尺寸 imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【原理參考】