時序數據庫 Apache-IoTDB 源碼解析之文件索引塊(五)


上一章聊到 TsFile 的文件組成,以及數據塊的詳細介紹。詳情請見:

時序數據庫 Apache-IoTDB 源碼解析之文件數據塊(四)

打一波廣告,歡迎大家訪問IoTDB 倉庫,求一波 Star。

這一章主要想聊聊:

  1. TsFile索引塊的組成
  2. 索引塊的查詢過程
  3. 索引塊目前在做的改進項

索引塊

索引塊結構圖

索引塊由兩大部分組成,其寫入的方式是從左到右寫入,也就是從文件頭向文件尾寫入。但讀出的方式是先讀出TsFileMetaData 再讀出 TsDeviceMetaDataList 中的具體一部分。我們按照讀取數據的順序介紹:

TsFileMetaData

TsFileMetaData屬於文件的 1 級索引,用來索引 Device 是否存在、在哪里等信息,其中主要保存了:

  1. DeviceMetaDataIndexMap:Map結構,Key 是設備名,Value 是 TsDeviceMetaDataIndex ,保存了包含哪些 Device(邏輯概念上的一個集合一段時間內的數據,例如前幾章我們講到的:張三、李四、王五)以及他們的開始時間及結束時間、在左側 TsDeviceMetaDataList 文件塊中的偏移量等。
  2. MeasurementSchemaMap:Map結構,Key 是測點的一個全路徑,Value 是 measurementSchema ,保存了包含的測點數據(邏輯概念上的某一類數據的集合,如體溫數據)的原信息,如:壓縮方式,數據類型,編碼方式等。
  3. 最后是一個布隆過濾器,快速檢測某一個 時間序列 是不是存在於文件內(這里等聊到 server 模塊寫文件的策略時候再聊)。我們知道這個過濾器的特點就是:沒有的一定沒有,但有的不一定有。為了保證准確性和過濾器序列化后的大小均衡,這里提供了一個 1% - 10% 錯誤率的可配置,當為 1% 錯誤率時,保存 1 萬個測點信息,大概是 11.7 K。

我們再回想 SQL :SELECT 體溫 FROM 王五 WHERE time = 1 。讀文件的過程就應該是:

  1. 先用布隆過濾器判斷文件內是否有王五的體溫列,如果沒有,查找下一個文件。
  2. 從 DeviceMetaDataIndexMap 中找到王五的 TsDeviceMetaDataIndex ,從而得到了王五的 TsDeviceMetadata 的 offset,接下來就尋道至這個 offset 把王五的 TsDeviceMetadata 讀出來。
  3. MeasurementSchemaMap 不用關注,主要是給 Spark 使用的,ChunkHeader 中也保存了這些信息。

TsDeviceMetaDataList

TsDeviceMetaDataList 屬於文件的 2 級索引,用來索引具體的測點數據是不是存在、在哪里等信息。其中主要保存了:

  1. ChunkGroupMetaData:ChunkGroup 的索引信息,主要包含了每個 ChunkGroup 數據塊的起止位置以及包含的所有的測點元信息(ChunkMetaData)。
  2. ChunkMetaData :Chunk 的索引信息,主要包含了每個設備的測點在文件中的起止位置、開始結束時間、數據類型和預聚合信息。

上面的例子中,從 TsFileMetadata 已經拿到了王五的 TsDeviceMetadataIndex,這里就可以直接讀出王五的 TsDeviceMetadata,並且遍歷里邊的 ChunkGroupMetadata 中的 ChunkMetadata,找到體溫對應的所有的 ChunkMetadata。通過預聚合信息對時間過濾,判斷能否使用當前的 Chunk 或者能否直接使用預聚合信息直接返回數據(等介紹到 server 的查詢引擎時候細聊)。

如果不能直接返回,因為 ChunkMetaData 包含了這個 Chunk 對應的文件的偏移量,只需要使用 seek(offSet) 就會跳轉到數據塊,使用上一章介紹的讀取方法進行遍歷就完成了整個讀取。

預聚合信息(Statistics)

文中多次提到了預聚合在這里詳細介紹一下它的數據結構。

// 所屬文件塊的開始時間 private long startTime; // 所屬文件塊的結束時間 private long endTime; // 所屬文件塊的數據類型 private TSDataType tsDataType; // 所屬文件塊的最小值 private int minValue; // 所屬文件塊的最大值 private int maxValue; // 所屬文件塊的第一個值 private int firstValue; // 所屬文件塊的最后一個值 private int lastValue; // 所屬文件塊的所有值的和 private double sumValue; 

這個結構主要保存在 ChunkMetaData 和 PageHeader 中,這樣做的好處就是,你不必從硬盤中讀取具體的Page 或者 Chunk 的文件內容就可以獲得最終的結果,例如:SELECT SUM(體溫) FROM 王五 ,當定位到 ChunkMetaData 時,判斷能否直接使用這個 Statistics 信息(具體怎么判斷,之后會在介紹 server 時具體介紹),如果能使用,那么直接返回 sumValue。這樣返回的速度,無論存了多少數據,它的聚合結果響應時間簡直就是 1 毫秒以內。

樣例數據

我們繼續使用上一章聊到的示例數據來展示。

時間戳 人名 體溫 心率
1580950800 王五 36.7 100
1580950911 王五 36.6 90

完整的文件信息如下:

            POSITION| CONTENT -------- ------- 0| [magic head] TsFile 6| [version number] 000002 // 數據塊開始 ||||||||||||||||||||| [Chunk Group] of wangwu begins at pos 12, ends at pos 253, version:0, num of Chunks:2 12| [Chunk] of xinlv, numOfPoints:1, time range:[1580950800,1580950800], tsDataType:INT32, [minValue:100,maxValue:100,firstValue:100,lastValue:100,sumValue:100.0] | [marker] 1 | [ChunkHeader] | 1 pages 121| [Chunk] of tiwen, numOfPoints:1, time range:[1580950800,1580950800], tsDataType:FLOAT, [minValue:36.7,maxValue:36.7,firstValue:36.7,lastValue:36.7,sumValue:36.70000076293945] | [marker] 1 | [ChunkHeader] | 1 pages 230| [Chunk Group Footer] | [marker] 0 | [deviceID] wangwu | [dataSize] 218 | [num of chunks] 2 ||||||||||||||||||||| [Chunk Group] of wangwu ends // 索引塊開始 253| [marker] 2 254| [TsDeviceMetadata] of wangwu, startTime:1580950800, endTime:1580950800 | [startTime] 1580950800 | [endTime] 1580950800 | [ChunkGroupMetaData] of wangwu, startOffset12, endOffset253, version:0, numberOfChunks:2 | [ChunkMetaData] of xinlv, startTime:1580950800, endTime:1580950800, offsetOfChunkHeader:12, dataType:INT32, statistics:[minValue:100,maxValue:100,firstValue:100,lastValue:100,sumValue:100.0] | [ChunkMetaData] of tiwen, startTime:1580950800, endTime:1580950800, offsetOfChunkHeader:121, dataType:FLOAT, statistics:[minValue:36.7,maxValue:36.7,firstValue:36.7,lastValue:36.7,sumValue:36.70000076293945] 446| [TsFileMetaData] | [num of devices] 1 | [TsDeviceMetadataIndex] of wangwu, startTime:1580950800, endTime:1580950800, offSet:254, len:192 | [num of measurements] 2 | 2 key&measurementSchema | [createBy isNotNull] false | [totalChunkNum] 2 | [invalidChunkNum] 0 //布隆過濾器 | [bloom filter bit vector byte array length] 30 | [bloom filter bit vector byte array] | [bloom filter number of bits] 256 | [bloom filter number of hash functions] 5 599| [TsFileMetaDataSize] 153 603| [magic tail] TsFile 609| END of TsFile 

當執行: SELECT 體溫 FROM 王五 時:

  1. 從 599 開始讀,1 級索引長度為 153.
  2. 599 - 153 = 446 就是 1 級索引讀開始位置,並讀出 TsDeviceMetadataIndex of 王五,其中記錄了,王五設備的 2 級索引的 offset 為 254.
  3. 跳到 254 開始讀 2 級索引,找到 ChunkMetaData of 體溫, 其中記錄了體溫數據的 Chunk 的offset 為 121
  4. 跳到 121 ,這里進入了數據塊,從 121 讀取到 230 ,讀出的數據就全部是體溫數據。

改進項

1. 只讀投影列

前面第 3 步中,讀取 2 級索引時候,會將這個設備下的所有測點數據全部讀出來,這依然不太符合只讀投影列的設計,所以在新的 TsFile 中,修改了 1級索引和 2 級索引的部分結構,使得讀出的數據更少,更高效。有興趣的同學可以關注 PR: Refactor TsFile #736

2. 文件級 Statistics

在物聯網場景中經常會涉及到查詢某個設備的最后狀態,比如:車聯網中,查詢車輛的末次位置( SELECT LAST(lat,lon) FROM VechicleID ),或者當前的點火、熄火狀態等 SELECT LAST(accStatus) FROM VechicleID 

或者當某些分頁查詢等情況時候,經常會使用到 COUNT(*) 等操作,這些都非常符合 Statistics 結構,這些場景涉及到的索引設計也都會體現到新的 TsFile 索引改動中。

到此已經介紹完了文件的整體結構,了解了大體的寫入和讀取過程,但是 TsFile 的 API 是如何設計的,怎樣在代碼里做一些特殊的功課,來繞過 Java 裝箱、GC 等問題呢?歡迎持續關注。。。。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM