如何用Haskell寫一顆紅黑樹
Candy?在上學期的數算課上學了紅黑樹,但是他一直沒寫過。
最近他入門了一下Haskell,得知用Haskell可以很方便實現各種樹結構,於是就去學了一下如何用Haskell寫紅黑樹,發現只要不到60行(包括空行和類型簽名)!
下面是一個簡單的小教程。
定義類型
和普通二叉樹一樣噠,只不過加上了一個顏色信息
data Tree a = Nil | Node Color (Tree a) a (Tree a) deriving (Show, Eq)
data Color = R | B deriving (Show, Eq)
輔助函數
- 將樹根染黑:
makeBlack :: Tree a -> Tree a
makeBlack Nil = Nil
makeBlack (Node _ l x r) = Node B l x r
- 將樹根染紅:
makeRed :: Tree a -> Tree a
makeRed Nil = Nil
makeRed (Node _ l x r) = Node R l x r
插入操作
一般的紅黑樹插入不太方便用純函數式來寫,Okasaki在1999年提出了一種新的插入方法,將插入統一為:
- 首先默認插入紅色節點,然后從下向上進行balance操作;
- balance操作會處理當前子樹的children和grandchildren出現雙紅的情況,並且會將當前子樹的根變紅(balance操作並不會改變rank)
插入操作的框架很簡單,需要注意的是最后要讓整棵樹的根變黑:
insert :: (Ord a) => a -> Tree a -> Tree a
insert x = makeBlack . ins
where ins Nil = Node R Nil x Nil
ins t@(Node c l y r) | x < y = balance $ Node c (ins l) y r
| x > y = balance $ Node c l y (ins r)
| otherwise = t
balance操作要處理四種情況:
可以方便的用pattern matching來實現:
balance :: Tree a -> Tree a
balance (Node B (Node R (Node R a x b) y c) z d) = Node R (Node B a x b) y (Node B c z d)
balance (Node B (Node R a x (Node R b y c)) z d) = Node R (Node B a x b) y (Node B c z d)
balance (Node B a x (Node R (Node R b y c) z d)) = Node R (Node B a x b) y (Node B c z d)
balance (Node B a x (Node R b y (Node R c z d))) = Node R (Node B a x b) y (Node B c z d)
balance t@(Node c x l r) = t
刪除操作
插入操作只要處理“雙紅”,刪除操作還要處理“黑色節點數相等”,比較麻煩。
這里采用了Stefan Kahrs在2001年提出的方法,主要特點是:
- 不將帶刪除節點與后繼交換
- 維持一個新的invariant:
- 從黑根子樹中刪除節點,該子樹高度會-1
- 從紅根子樹中刪除節點,該子樹高度不變
我們有balanceL和balanceR兩個操作,分別處理“左子樹比右子樹短1”和“右子樹比左子樹短1”的情況,將整棵樹的高度變成較短那個的狀態。
刪除操作的框架如下:
delete :: Ord a => a -> Tree a -> Tree a
delete x = makeBlack . del
where
del Nil = Nil
del t@(Node _ l y r) | x < y = delL t
| x > y = delR t
| otherwise = app l r
delL (Node _ l@(Node B _ _ _) y r) = balanceL $ Node B (del l) y r
delL (Node _ l y r) = Node R (del l) y r
delR (Node _ l y r@(Node B _ _ _)) = balanceR $ Node B l y (del r)
delR (Node _ l y r) = Node R l y (del r)
以待插入節點將插入左子樹為例:
- 當前節點y的左子樹為黑根時,會在刪除后將y染黑並進行balanceL操作
- 當前節點y的左子樹為紅根時,會在刪除后將y染紅
容易發現,這樣操作是可以維持新的invariant的(枚舉當前節點顏色情況證明即可)
由於delete中在balanceL/R之前會染黑,balanceL/R只要處理根為黑的情況即可,有三種情況:
同樣用pattern matching來實現:
balanceL :: Tree a -> Tree a
balanceL (Node B (Node R a x b) y r) = Node R (Node B a x b) y r
balanceL (Node B l y (Node B a z b)) = balance $ Node B l y (Node R a z b)
balanceL (Node B l y (Node R (Node B a u b) z c)) = Node R (Node B l y a) u (balance $ Node B b z (makeRed c))
balanceR :: Tree a -> Tree a
balanceR (Node B l y (Node R a x b)) = Node R l y (Node B a x b)
balanceR (Node B (Node B a z b) y r) = balance $ Node B (Node R a z b) y r
balanceR (Node B (Node R c z (Node B a u b)) y r) = Node R (balance $ Node B (makeRed c) z a) u (Node B b y r)
app會合並兩個子樹,有三種情況:
同樣用pattern matching來實現:
app :: Tree a -> Tree a -> Tree a
app Nil t = t
app t Nil = t
app (Node R a x b) (Node R c y d) =
case app b c of
Node R b' z c' -> Node R (Node R a x b') z (Node R c' y d)
s -> Node R a x (Node R s y d)
app (Node B a x b) (Node B c y d) =
case app b c of
Node r b' z c' -> Node R (Node B a x b') z (Node B c' y d)
s -> balanceL $ Node B a x (Node B s y d)
app (Node R a x b) t = Node R a x (app b t)
app t (Node R a x b) = Node R (app t a) x b
完整代碼
只要60行!
data Tree a = Nil | Node Color (Tree a) a (Tree a) deriving (Show, Eq)
data Color = R | B deriving (Show, Eq)
makeBlack :: Tree a -> Tree a
makeBlack Nil = Nil
makeBlack (Node _ l x r) = Node B l x r
makeRed :: Tree a -> Tree a
makeRed Nil = Nil
makeRed (Node _ l x r) = Node R l x r
insert :: (Ord a) => a -> Tree a -> Tree a
insert x = makeBlack . ins
where ins Nil = Node R Nil x Nil
ins t@(Node c l y r) | x < y = balance $ Node c (ins l) y r
| x > y = balance $ Node c l y (ins r)
| otherwise = t
balance :: Tree a -> Tree a
balance (Node B (Node R (Node R a x b) y c) z d) = Node R (Node B a x b) y (Node B c z d)
balance (Node B (Node R a x (Node R b y c)) z d) = Node R (Node B a x b) y (Node B c z d)
balance (Node B a x (Node R (Node R b y c) z d)) = Node R (Node B a x b) y (Node B c z d)
balance (Node B a x (Node R b y (Node R c z d))) = Node R (Node B a x b) y (Node B c z d)
balance t@(Node c x l r) = t
delete :: Ord a => a -> Tree a -> Tree a
delete x = makeBlack . del
where
del Nil = Nil
del t@(Node _ l y r) | x < y = delL t
| x > y = delR t
| otherwise = app l r
delL (Node _ l@(Node B _ _ _) y r) = balanceL $ Node B (del l) y r
delL (Node _ l y r) = Node R (del l) y r
delR (Node _ l y r@(Node B _ _ _)) = balanceR $ Node B l y (del r)
delR (Node _ l y r) = Node R l y (del r)
balanceL :: Tree a -> Tree a
balanceL (Node B (Node R a x b) y r) = Node R (Node B a x b) y r
balanceL (Node B l y (Node B a z b)) = balance $ Node B l y (Node R a z b)
balanceL (Node B l y (Node R (Node B a u b) z c)) = Node R (Node B l y a) u (balance $ Node B b z (makeRed c))
balanceR :: Tree a -> Tree a
balanceR (Node B l y (Node R a x b)) = Node R l y (Node B a x b)
balanceR (Node B (Node B a z b) y r) = balance $ Node B (Node R a z b) y r
balanceR (Node B (Node R c z (Node B a u b)) y r) = Node R (balance $ Node B (makeRed c) z a) u (Node B b y r)
app :: Tree a -> Tree a -> Tree a
app Nil t = t
app t Nil = t
app (Node R a x b) (Node R c y d) =
case app b c of
Node R b' z c' -> Node R (Node R a x b') z (Node R c' y d)
s -> Node R a x (Node R s y d)
app (Node B a x b) (Node B c y d) =
case app b c of
Node r b' z c' -> Node R (Node B a x b') z (Node B c' y d)
s -> balanceL $ Node B a x (Node B s y d)
app (Node R a x b) t = Node R a x (app b t)
app t (Node R a x b) = Node R (app t a) x b
其他API
一些其他常規操作的API:
tree2List :: Tree a -> [a]
tree2List Nil = []
tree2List (Node c l x r) = tree2List l ++ [x] ++ tree2List r
list2Tree :: Ord a => [a] -> Tree a
list2Tree = foldl (flip insert) Nil
search :: (Ord a) => a -> Tree a -> Bool
search _ Nil = False
search x (Node _ l y r)
| x == y = True
| x < y = search x l
| otherwise = search x r
successor :: Ord a => a -> Tree a -> a
successor x Nil = x
successor x (Node _ l y r)
| x < y = let t = successor x l in if x == t then y else t
| x >= y = successor x r
PS:因為沒有維護size信息所以沒法求第k小QwQ,不過加上size信息應該也不難寫。
參考資料
- 一篇講的很好的博客
- 一份代碼實現
- Kahrs, Stefan. (2001). Red-black trees with types. Journal of Functional Programming. 11. 10.1017/S0956796801004026.
另外,Matt Might提出了一種更加簡潔、函數式的方法,詳情參閱他的博客。