Flink輸出到Kafka(兩種方式)


方式一:讀取文件輸出到Kafka   

   1.代碼

import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011

//溫度傳感器讀取樣例類
case class SensorReading(id: String, timestamp: Long, temperature: Double)

object KafkaSinkTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)

import org.apache.flink.api.scala._
val inputStream = env.readTextFile("sensor.txt")
val dataStream = inputStream.map(x => {
val arr = x.split(",")
SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble).toString //轉成String方便序列化輸出
})

//sink
dataStream.addSink(new FlinkKafkaProducer011[String]("localhost:9092", "sinkTest", new SimpleStringSchema()))
dataStream.print()

env.execute(" kafka sink test")

}
}

2.啟動zookeeper:參考https://www.cnblogs.com/wddqy/p/12156527.html
3.啟動kafka:參考https://www.cnblogs.com/wddqy/p/12156527.html
4.創建kafka消費者觀察結果

方式二:Kafka到Kafka   

   1.代碼

import java.util.Properties
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer011, FlinkKafkaProducer011}

//溫度傳感器讀取樣例類
case class SensorReading(id: String, timestamp: Long, temperature: Double)

object KafkaSinkTest1 {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)

import org.apache.flink.api.scala._
//從Kafka到Kafka
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")

val inputStream = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
val dataStream = inputStream.map(x => {
val arr = x.split(",")
SensorReading(arr(0).trim, arr(1).trim.toLong, arr(2).trim.toDouble).toString //轉成String方便序列化輸出
})

//sink
dataStream.addSink(new FlinkKafkaProducer011[String]("localhost:9092", "sinkTest", new SimpleStringSchema()))
dataStream.print()

env.execute(" kafka sink test")

}
}
2.啟動zookeeper:參考https://www.cnblogs.com/wddqy/p/12156527.html
3.啟動kafka:參考https://www.cnblogs.com/wddqy/p/12156527.html
4.創建Kafka生產者和消費者,運行代碼,觀察結果

有幫助的歡迎評論打賞哈,謝謝!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM