設置tensorflow的顯存為動態使用
默認情況下,TensorFlow 將使用幾乎所有可用的顯存,以避免內存碎片化所帶來的性能損失,但這樣不能在一台機器上運行多個程序
tensorflow 1.x
from tensorflow.compat.v1 import GPUOptions
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import Session
from keras.backend.tensorflow_backend import set_session
gpu_options = GPUOptions(allow_growth=True)
set_session(Session(config=ConfigProto(gpu_options=gpu_options)))
tensorflow 2.0
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)