線性方程組的分解法——LU分解法


  1.代碼

%%LU分解法
function LUDM = LU_Decomposition_method(A,b)
global n;global B;global U;global L;global M;
[n,n] = size(A);
B = [A,b];
R_A = rank(A);R_B = rank(B);
if R_A ~= R_B
    disp('方程無解');
elseif (R_A == R_B) && (R_A == n)
    disp('此方程有唯一解');
    M = LU_decomposition(A);
    L = M(:,:,1);U = M(:,:,2);
    matrix1 = [L b];
    Y = Lower_trig_iterative_solution(matrix1);
    matrix2 = [U Y];
    X = Upper_trig_iterative_solution(matrix2);
    disp('LU分解中L=');
    L
    disp('LU分解中U=');
    U
else
    disp('方程有無窮多組解');
end
disp('解向量為:');
LUDM = X;

%%矩陣的LU分解
    function LUD = LU_decomposition(A)
        [n,n] = size(A);
        M = Elementary_transformation_of_the_lower_triangle(A);
        L = M(:,:,n);U=A;
        for i = 1:1:n-1
            U = M(:,:,i)*U;
        end
        LUD(:,:,1) = L;
        LUD(:,:,2) = U;
    end
%%下三角初等變換
    function ETLT = Elementary_transformation_of_the_lower_triangle(A)
        [n,n] = size(A);
        L = zeros(n,1,n);
        for i = 1:1:n
            for j = 1:1:n
                for k = 1:1:n
                    if j == k
                        L(j,k,i) = 1;
                    end
                end
            end
        end
        for i = 1:1:n-1
            for j = 1:1:n
                for k = 1:1:n
                    if j > k
                        if i == k
                            L(j,k,i) = -A(j,k)/A(k,k);
                        end
                        L(i+1:n,i,n) = -L(i+1:n,i,i);
                    end
                end
            end
            A = L(:,:,i)*A;
        end
        ETLT = L;
    end
%%下三角迭代法
    function LTIS = Lower_trig_iterative_solution(M)
        [m,n] = size(M);
        B  =M(:,1:n-1);ba = M(:,n);
        y = zeros(1,m);
        y(1) = ba(1);
        for i = 2:1:m
            sum = 0;
            for j = 1:1:i-1
                sum = sum+B(i,j)*y(j);
            end
            y(i) = ba(i)-sum;
        end
        LTIS = y';
    end
%%上三角迭代法
    function UTIS = Upper_trig_iterative_solution(M)
        [m,n] = size(M);
        B = M(:,1:n-1);ba = M(:,n);
        x = zeros(1,m);
        x(m) =ba(m)/B(m,m);
        for i = m-1:-1:1
            sum = 0;
            for j = i+1:1:m
                sum = sum+B(i,j)*x(j);
            end
            x(i) = (ba(i)-sum)/B(i,i);
        end
        UTIS = x';
    end
end

  2.例子

clear all
clc
M = rand(9)
b = reshape(rand(3),9,1)
 
S = LU_Decomposition_method(M,b)

M\b

  結果

M =
  列 1 至 7
    0.5944    0.4709    0.4076    0.4235    0.5181    0.0680    0.6022
    0.0225    0.6959    0.8200    0.0908    0.9436    0.2548    0.3868
    0.4253    0.6999    0.7184    0.2665    0.6377    0.2240    0.9160
    0.3127    0.6385    0.9686    0.1537    0.9577    0.6678    0.0012
    0.1615    0.0336    0.5313    0.2810    0.2407    0.8444    0.4624
    0.1788    0.0688    0.3251    0.4401    0.6761    0.3445    0.4243
    0.4229    0.3196    0.1056    0.5271    0.2891    0.7805    0.4609
    0.0942    0.5309    0.6110    0.4574    0.6718    0.6753    0.7702
    0.5985    0.6544    0.7788    0.8754    0.6951    0.0067    0.3225
  列 8 至 9
    0.7847    0.1917
    0.4714    0.7384
    0.0358    0.2428
    0.1759    0.9174
    0.7218    0.2691
    0.4735    0.7655
    0.1527    0.1887
    0.3411    0.2875
    0.6074    0.0911
b =
    0.5762
    0.6834
    0.5466
    0.4257
    0.6444
    0.6476
    0.6790
    0.6358
    0.9452
此方程有唯一解
LU分解中L=
L =
  列 1 至 7
    1.0000         0         0         0         0         0         0
    0.0379    1.0000         0         0         0         0         0
    0.7155    0.5352    1.0000         0         0         0         0
    0.5261    0.5762  -74.4491    1.0000         0         0         0
    0.2717   -0.1391 -136.4397    1.7669    1.0000         0         0
    0.3008   -0.1074  -74.0359    0.9200    0.6765    1.0000         0
    0.7115   -0.0228   42.5434   -0.5996    0.3838 -141.0829    1.0000
    0.1585    0.6728   -1.3001   -0.0414    0.8852  -70.1396    0.4925
    1.0070    0.2658  -39.5864    0.4476    1.3552   49.3425   -0.3788
  列 8 至 9
         0         0
         0         0
         0         0
         0         0
         0         0
         0         0
         0         0
    1.0000         0
    5.1107    1.0000
LU分解中U=
U =
  列 1 至 7
    0.5944    0.4709    0.4076    0.4235    0.5181    0.0680    0.6022
         0    0.6781    0.8045    0.0748    0.9240    0.2522    0.3640
         0         0   -0.0039   -0.0765   -0.2275    0.0404    0.2903
         0         0         0   -5.8101  -16.7848    3.4944   21.0900
   -0.0000         0         0         0   -1.1550    0.1988    2.6992
    0.0000         0         0         0         0   -0.0074    0.5483
    0.0000   -0.0000         0         0         0         0   76.6535
    0.0000    0.0000         0   -0.0000         0         0         0
   -0.0000   -0.0000         0    0.0000         0         0         0
  列 8 至 9
    0.7847    0.1917
    0.4416    0.7312
   -0.7621   -0.2857
  -57.2283  -20.8735
   -2.2924   -1.7782
   -1.9343    0.0429
 -274.3037    6.4447
   -1.9999   -0.0598
         0    0.7768
解向量為:
S =
   -0.9496
    2.2130
    0.5483
    1.9595
   -3.8859
   -0.4632
    0.4453
    0.3978
    2.6573
ans =
   -0.9496
    2.2130
    0.5483
    1.9595
   -3.8859
   -0.4632
    0.4453
    0.3978
    2.6573
>> 

  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM