Tensorflow之CNN卷積層池化層padding規則


padding的規則

·          padding=‘VALID’時,輸出的寬度和高度的計算公式(下圖gif為例)

    

      輸出寬度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5【向上取整=2】

    輸出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5【向上取整=2】

    輸出的形狀[1,2,2,1]

    

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道輸入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1個卷積核對應1個featuremap輸出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding='VALID')  ##步長2,VALID不補0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print('input:\n', sess.run(input))
    # print('filter:\n', sess.run(filter))
    print('op:\n',sess.run(op))

##輸出結果
'''
 [[[[ 2.]
   [-1.]]

  [[-1.]
   [ 0.]]]]
'''
VALID步長2

    如果strides=[1,3,3,1]的情況又是如何呢?   

    輸出寬度:output_width  = (in_width-filter_width+1)/strides_width  =(5-3+1)/3=1

    輸出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/3=1

    輸出的形狀[1,1,1,1],因此輸出的結果只有一個

    

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道輸入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1個卷積核對應1個featuremap輸出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding='VALID')  ##步長2,VALID不補0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print('input:\n', sess.run(input))
    # print('filter:\n', sess.run(filter))
    print('op:\n',sess.run(op))

##輸出結果
'''
op:
 [[[[ 2.]]]]
'''
VALID步長3

              padding=‘SAME’時,輸出的寬度和高度的計算公式

    輸出寬度:output_width  = in_width/strides_width=5/2=2.5【向上取整3】

    輸出高度:output_height = in_height/strides_height=5/2=2.5【向上取整3】

    則輸出的形狀:[1,3,3,1]

    那么padding補0的規則又是如何的呢?【先確定輸出形狀,再計算補多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((3-1)*2+3-5,0)=2

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((3-1)*2+3-5,0)=2

    pad_top = pad_height/2=1

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=1

    pad_right = pad_width-pad_left=1

        

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道輸入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1個卷積核對應1個featuremap輸出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding='SAME')  ##步長2,VALID不補0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print('input:\n', sess.run(input))
    # print('filter:\n', sess.run(filter))
    print('op:\n',sess.run(op))

##輸出結果
'''
op:
 [[[[ 3.]
   [ 1.]
   [-4.]]

  [[ 3.]
   [ 0.]
   [-3.]]

  [[ 4.]
   [-1.]
   [-3.]]]]
'''
SAME步長2

    如果步長為3呢?補0的規則又如何?

    輸出寬度:output_width  = in_width/strides_width=5/3=2

    輸出高度:output_height = in_height/strides_height=5/3=2

    則輸出的形狀:[1,2,2,1]

    那么padding補0的規則又是如何的呢?【先確定輸出形狀,再計算補多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((2-1)*3+3-5,0)=1

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((2-1)*3+3-5,0)=1

    pad_top = pad_height/2=0【向下取整】

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=0【向下取整】

    pad_right = pad_width-pad_left=1

    

import tensorflow as tf
print(3/2)
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道輸入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1個卷積核對應1個featuremap輸出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding='SAME')  ##步長2,VALID不補0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print('input:\n', sess.run(input))
    # print('filter:\n', sess.run(filter))
    print('op:\n',sess.run(op))

##輸出結果
'''
op:
 [[[[ 2.]
   [-3.]]

  [[ 0.]
   [-3.]]]]
'''
SAME步長3

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM