on yarn:https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/deployment/yarn_setup.html
flink on yarn兩種方式
第一種方式:yarn session 模式,在yarn上啟動一個長期運行的flink集群
使用 yarn session 模式,我們需要先啟動一個 yarn-session 會話,相當於啟動了一個 yarn 任務,這個任務所占用的資源不會變化,並且一直運行。我們在使用 flink run 向這個 session 任務提交作業時,如果 session 的資源不足,那么任務會等待,直到其他資源釋放。當這個 yarn-session 被殺死時,所有任務都會停止。
把yarn和hdfs相關配置文件拷貝到flink配置目錄下,或者直接指定yarn和hdfs配置文件對應的路徑
export HADOOP_CONF_DIR=/root/flink-1.8.2/conf
cd flink-1.8.2/ ./bin/yarn-session.sh -jm 1024m -tm 4096m -s 16
-jm:jobmanager的內存,-tm:每個taskmanager的內存,-s:the number of processing slots per Task Manager
日志如下
[root@master01 flink-1.8.2]# ./bin/yarn-session.sh -jm 1024m -tm 4096m -s 16 2019-12-10 10:05:40,010 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.rpc.address, master01.hadoop.xxx.cn 2019-12-10 10:05:40,012 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.rpc.port, 6123 2019-12-10 10:05:40,012 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: jobmanager.heap.size, 1024m 2019-12-10 10:05:40,012 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: taskmanager.heap.size, 1024m 2019-12-10 10:05:40,012 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: taskmanager.numberOfTaskSlots, 1 2019-12-10 10:05:40,012 INFO org.apache.flink.configuration.GlobalConfiguration - Loading configuration property: parallelism.default, 1 2019-12-10 10:05:40,067 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - Found Yarn properties file under /tmp/.yarn-properties-root. 2019-12-10 10:05:40,399 INFO org.apache.flink.runtime.security.modules.HadoopModule - Hadoop user set to root (auth:SIMPLE) 2019-12-10 10:05:40,459 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.xxx:8032 2019-12-10 10:05:40,634 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=4096, numberTaskManagers=1, slotsPerTaskManager=16} 2019-12-10 10:05:40,857 WARN org.apache.hadoop.util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2019-12-10 10:05:40,873 WARN org.apache.flink.yarn.AbstractYarnClusterDescriptor - The configuration directory ('/root/flink-1.8.2/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them. 2019-12-10 10:05:42,434 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Submitting application master application_1570496850779_0463 2019-12-10 10:05:42,457 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1570496850779_0463 2019-12-10 10:05:42,457 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Waiting for the cluster to be allocated 2019-12-10 10:05:42,458 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Deploying cluster, current state ACCEPTED 2019-12-10 10:05:46,234 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - YARN application has been deployed successfully. 2019-12-10 10:05:46,597 INFO org.apache.flink.runtime.rest.RestClient - Rest client endpoint started. Flink JobManager is now running on worker03.hadoop.xxx.cn:38055 with leader id 00000000-0000-0000-0000-000000000000. JobManager Web Interface: http://worker03.hadoop.xxx.cn:38055
查看web界面可以直接到yarn界面查看,也可以通過日志中給出的jobmanager界面查看
提交任務測試,提交任務使用./bin/flink
cd flink-1.8.2/ ./bin/flink run ./examples/batch/WordCount.jar
日志如下:
[root@master01 flink-1.8.2]# ./bin/flink run ./examples/batch/WordCount.jar 2019-12-10 11:01:43,553 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - Found Yarn properties file under /tmp/.yarn-properties-root. 2019-12-10 11:01:43,553 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - Found Yarn properties file under /tmp/.yarn-properties-root. 2019-12-10 11:01:43,785 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - YARN properties set default parallelism to 16 2019-12-10 11:01:43,785 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - YARN properties set default parallelism to 16 YARN properties set default parallelism to 16 2019-12-10 11:01:43,812 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.211:8032 2019-12-10 11:01:43,904 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar 2019-12-10 11:01:43,904 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar 2019-12-10 11:01:43,956 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Found application JobManager host name 'worker02.hadoop.xxx.cn' and port '39095' from supplied application id 'application_1570496850779_0467' Starting execution of program Executing WordCount example with default input data set. Use --input to specify file input. Printing result to stdout. Use --output to specify output path. (a,5) (action,1) (after,1) (against,1) (all,2) ......
問題:在提交flink任務時候,flink是怎么找到對應的集群呢?
看日志高亮部分,查看/tmp/.yarn-properties-root文件內容
[root@master01 flink-1.8.2]# more /tmp/.yarn-properties-root #Generated YARN properties file #Tue Dec 10 10:40:29 CST 2019 parallelism=16 dynamicPropertiesString= applicationID=application_1570496850779_0467
這個applicationID不就是我們提交到yarn上flink集群對應的id嘛。
到flink web ui查看任務記錄
此外,在啟動on yarn flink集群時候可以使用-d or --detached實現類似后台運行的形式執行,此方式下,如果想停止集群,使用yarn application -kill <appId>
第二種方式:Run a single Flink job on YARN
上面第一種方式是在yarn上啟動一個flink集群,然后提交任務時候向這個集群提交。此外,也可以在yarn上直接執行一個flink任務,有點類似spark-submit的感覺。
[root@master01 flink-1.8.2]# ./bin/flink run -m yarn-cluster ./examples/batch/WordCount.jar
日志:
2019-12-10 11:44:56,912 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at master01.hadoop.xxx.cn/xxx.xx.x.xxx:8032 2019-12-10 11:44:57,004 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar 2019-12-10 11:44:57,004 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar 2019-12-10 11:44:57,101 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=1024, numberTaskManagers=1, slotsPerTaskManager=1} 2019-12-10 11:44:57,379 WARN org.apache.flink.yarn.AbstractYarnClusterDescriptor - The configuration directory ('/root/flink-1.8.2/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them. 2019-12-10 11:45:01,058 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Submitting application master application_1570496850779_0470 2019-12-10 11:45:01,093 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1570496850779_0470 2019-12-10 11:45:01,093 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Waiting for the cluster to be allocated 2019-12-10 11:45:01,094 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Deploying cluster, current state ACCEPTED 2019-12-10 11:45:05,621 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - YARN application has been deployed successfully. Starting execution of program Executing WordCount example with default input data set. Use --input to specify file input. Printing result to stdout. Use --output to specify output path. (a,5) (action,1) (after,1) (against,1)
......
可以看到,第一件事是連接yarn的resourcemanager。
./bin/flink run 命令解析:
run [OPTIONS] <jar-file> <arguments> "run" 操作參數: -c,--class <classname> 如果沒有在jar包中指定入口類,則需要在這里通過這個參數指定 -m,--jobmanager <host:port> 指定需要連接的jobmanager(主節點)地址,使用這個參數可以指定一個不同於配置文件中的jobmanager -p,--parallelism <parallelism> 指定程序的並行度。可以覆蓋配置文件中的默認值。 默認查找當前yarn集群中已有的yarn-session信息中的jobmanager【/tmp/.yarn-properties-root】: ./bin/flink run ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1 連接指定host和port的jobmanager: ./bin/flink run -m hadoop100:1234 ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1 啟動一個新的yarn-session: ./bin/flink run -m yarn-cluster -yn 2 ./examples/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1 注意:yarn session命令行的選項也可以使用./bin/flink 工具獲得。它們都有一個y或者yarn的前綴 例如:./bin/flink run -m yarn-cluster -yn 2 ./examples/batch/WordCount.jar
Flink on yarn的內部實現
既然是on yarn,那必然需要知道yarn以及hdfs的相關配置,獲取相關配置流程如下:
1,先檢查有沒有設置 YARN_CONF_DIR, HADOOP_CONF_DIR or HADOOP_CONF_PATH環境變量,如果其中之一設置了的話,那就通過此方式讀取環境信息。
2,如果第一部分沒有設置任何內容,那么客戶端會去找HADOOP_HOME環境變量,然后訪問$HADOOP_HOME/etc/hadoop路徑下的配置文件。
當flink在提交一個任務時,客戶端首先會檢查資源是否可用(內存和cpu),然后上傳flink jar包到hdfs。
然后客戶端申請container啟動applicationMaster,被選中的nodeManager初始化container,比如下載相關文件,然后啟動applicationMaster。
JobManager和AM在同一個container中運行。AM也就知道JobManager的地址。然后為taskManager生成一個新的Flink配置文件(以便它們可以連接到JobManager)。文件也被上傳到HDFS。此外,AM container還提供Flink的web接口。(yarn分配的所有端口都是臨時端口。並且允許用戶並行執行多個Flink任務)
之后,AM開始為Flink的taskManager分配container,后者將從HDFS下載jar包和修改后的配置文件。即可接收job然后執行
HA
因為單點故障的存在(single point of failure (SPOF))所以要做HA,實現HA又分flink standalone模式和on yarn模式
flink standalone模式下的HA
運行多個jobManager,其中一個為leader,其他為standby,通過zookeeper實現故障切換。如下圖:
相關配置:
1.在conf/masters文件中添加多個jobManager主機和端口號,我這里環境如下
[root@master01 conf]# more masters master01.hadoop.xxx.cn:8081 worker03.hadoop.xxx.cn:8081
2.修改conf/flink-conf.yaml文件,主要是指定通過zookeeper來實現HA
(我這里已有運行正常的cdh集群)
high-availability: zookeeper high-availability.storageDir: hdfs:///flink/ha/ high-availability.zookeeper.quorum: master01.hadoop.xxx.cn:2181,worker01.hadoop.xxx.cn:2181,worker03.hadoop.xxx.cn:2181
此外,zookeeper是在/flink目錄下存儲對應的元數據(類似hbase),並且zk存儲的並不是真正做recovery的元數據,數據其實是存儲在hdfs上的,zk存儲的只是指向hdfs路徑的一個標識。
3.發flink包到各個節點
4.執行bin/start-cluster.sh
看wei界面
可以看到已經啟用HA以及使用的zk集群,目前leader為master01節點。zk目錄結構存儲如下:
[zk: localhost:2181(CONNECTED) 0] ls / [flink, hive_zookeeper_namespace_hive, zookeeper, solr] [zk: localhost:2181(CONNECTED) 1] ls /flink [default] [zk: localhost:2181(CONNECTED) 2] ls /flink/default [jobgraphs, leader, leaderlatch]
kill掉master01節點的jobManager進程看能否實現切換,進程如下:
83819 StandaloneSessionClusterEntrypoint
再訪問web界面,如下:
Flink on yarn HA實現
官網介紹:https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/jobmanager_high_availability.html#yarn-cluster-high-availability
我們需要修改 yarn-site.yaml 文件中的配置,如下所示:
<property> <name>yarn.resourcemanager.am.max-attempts</name> <value>4</value> <description> The maximum number of application master execution attempts. </description> </property>
yarn.resourcemanager.am.max-attempts 表示 Yarn 的 application master 的最大重試次數。
除了上述 HA 配置之外,還需要配置 flink-conf.yaml 中的最大重試次數(默認為2):
yarn.application-attempts: 10
當 yarn.application-attempts 配置為 10 的時候:
這意味着如果程序啟動失敗,YARN 會再重試 9 次(9 次重試 + 1 次啟動),如果 YARN 啟動 10 次作業還失敗,則 YARN 才會將該任務的狀態置為失敗。如果發生進程搶占,節點硬件故障或重啟,NodeManager 重新同步等,YARN 會繼續嘗試啟動應用。 這些重啟不計入 yarn.application-attempts 個數中。
同時官網給出了重要提示,不同 Yarn 版本的容器關閉行為不同:
-
YARN 2.3.0 < YARN 版本 < 2.4.0。如果 application master 進程失敗,則所有的 container 都會重啟。
-
YARN 2.4.0 < YARN 版本 < 2.6.0。TaskManager container 在 application master 故障期間,會繼續工作。這樣的優點是:啟動時間更快,且縮短了所有 task manager 啟動時申請資源的時間。
-
YARN 2.6.0 <= YARN 版本:失敗重試的間隔會被設置為 Akka 的超時時間。在一次時間間隔內達到最大失敗重試次數才會被置為失敗。
zookeeper.sasl.service-name
zookeeper.sasl.login-context-name