【源碼解讀】cycleGAN(一):網絡


源碼地址:https://github.com/aitorzip/PyTorch-CycleGAN

 

 

如圖所示,cycleGAN的網絡結構包括兩個生成器G(X->Y)和F(Y->X),兩個判別器Dx和Dy

生成器部分:網絡整體上經過一個降采樣然后上采樣的過程,中間是一系列殘差塊,數目由實際情況確定,根據論文中所說,當輸入分辨率為128x128,采用6個殘差塊,當輸入分辨率為256x256甚至更高時,采用9個殘差塊,其源代碼如下,

class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9):
        super(Generator, self).__init__()

        # Initial convolution block       
        model = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    nn.InstanceNorm2d(64),
                    nn.ReLU(inplace=True) ]

        # Downsampling
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        nn.InstanceNorm2d(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2

        # Residual blocks
        for _ in range(n_residual_blocks):
            model += [ResidualBlock(in_features)]

        # Upsampling
        out_features = in_features//2
        for _ in range(2):
            model += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        nn.InstanceNorm2d(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2

        # Output layer
        model += [  nn.ReflectionPad2d(3),
                    nn.Conv2d(64, output_nc, 7),
                    nn.Tanh() ]

        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)

其中,值得注意的網絡層是nn.ReflectionPad2d和nn.InstanceNorm2d,前者搭配7x7卷積,先在特征圖周圍以反射的方式補長度,使得卷積后特征圖尺寸不變,示例如下,輸出結果就是以特征圖邊界為反射邊,向外補充

 

 nn.InstanceNorm2d是相比於batchNorm更加適合圖像生成,風格遷移的歸一化方法,相比於batchNorm跨樣本,單通道統計,InstanceNorm采用單樣本,單通道統計,括號中的參數代表通道數。

 

判別器部分:結構比生成器更加簡單,經過5層卷積,通道數縮減為1,最后池化平均,尺寸也縮減為1x1,最最后reshape一下,變為(batchsize,1)

class Discriminator(nn.Module):
    def __init__(self, input_nc):
        super(Discriminator, self).__init__()

        # A bunch of convolutions one after another
        model = [   nn.Conv2d(input_nc, 64, 4, stride=2, padding=1),
                    nn.LeakyReLU(0.2, inplace=True) ]

        model += [  nn.Conv2d(64, 128, 4, stride=2, padding=1),
                    nn.InstanceNorm2d(128), 
                    nn.LeakyReLU(0.2, inplace=True) ]

        model += [  nn.Conv2d(128, 256, 4, stride=2, padding=1),
                    nn.InstanceNorm2d(256), 
                    nn.LeakyReLU(0.2, inplace=True) ]

        model += [  nn.Conv2d(256, 512, 4, padding=1),
                    nn.InstanceNorm2d(512), 
                    nn.LeakyReLU(0.2, inplace=True) ]

        # FCN classification layer
        model += [nn.Conv2d(512, 1, 4, padding=1)]

        self.model = nn.Sequential(*model)

    def forward(self, x):
        x =  self.model(x)
        # Average pooling and flatten
        return F.avg_pool2d(x, x.size()[2:]).view(x.size()[0])

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM