KNN算法和實現


 

 KNN要用到歐氏距離

 

 KNN下面的缺點很容易使分類出錯(比如下面黑色的點)

 

 下面是KNN算法的三個例子demo,

第一個例子是根據算法原理實現

 

import matplotlib.pyplot as plt
import numpy as np
import operator
# 已知分類的數據
x1 = np.array([3,2,1])
y1 = np.array([104,100,81])
x2 = np.array([101,99,98])
y2 = np.array([10,5,2])
scatter1 = plt.scatter(x1,y1,c='r')
scatter2 = plt.scatter(x2,y2,c='b')
# 未知數據
x = np.array([18])
y = np.array([90])
scatter3 = plt.scatter(x,y,c='k')
#畫圖例
plt.legend(handles=[scatter1,scatter2,scatter3],labels=['labelA','labelB','X'],loc='best')
plt.show()
# 已知分類的數據
x_data = np.array([[3,104],
                   [2,100],
                   [1,81],
                   [101,10],
                   [99,5],
                   [81,2]])
y_data = np.array(['A','A','A','B','B','B'])
x_test = np.array([18,90])
# 計算樣本數量
x_data_size = x_data.shape[0]
print(x_data_size)
# 復制x_test
print(np.tile(x_test, (x_data_size,1)))
# 計算x_test與每一個樣本的差值
diffMat = np.tile(x_test, (x_data_size,1)) - x_data
diffMat
# 計算差值的平方
sqDiffMat = diffMat**2
sqDiffMat
# 求和
sqDistances = sqDiffMat.sum(axis=1)
sqDistances
# 開方
distances = sqDistances**0.5
print(distances)
# 從小到大排序
sortedDistances = distances.argsort()#返回distances里的數據從小到大的下標數組
print(sortedDistances)
classCount = {}
# 設置k
k = 5
for i in range(k):
    # 獲取標簽
    votelabel = y_data[sortedDistances[i]]
    # 統計標簽數量
    classCount[votelabel] = classCount.get(votelabel,0) + 1#)0表示沒有該字典里沒有該值時默認為0
classCount
# 根據operator.itemgetter(1)-第1個值對classCount排序,然后再取倒序
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
print(sortedClassCount)
# 獲取數量最多的標簽
knnclass = sortedClassCount[0][0]#第一個0表示取第一個鍵值對('A', 3),第二個0表示取('A', 3)的‘A’
print(knnclass)

1
import numpy as np#對iris數據集進行訓練分類 2 from sklearn import datasets 3 from sklearn.model_selection import train_test_split 4 from sklearn.metrics import classification_report,confusion_matrix#對模型分類結果進行評估的兩個模型 5 import operator#https://blog.csdn.net/u010339879/article/details/98304292,關於operator的使用 6 import random 7 def knn(x_test, x_data, y_data, k): 8 x_data_size = x_data.shape[0] # 計算樣本數量 9 diffMat = np.tile(x_test,(x_data_size,1)) - x_data# 復制x_test,計算x_test與每一個樣本的差值 10 sqDiffMat = diffMat**2# # 計算差值的平方 11 sqDistance = sqDiffMat.sum(axis= 1) # 求和 12 distances = sqDistance**0.5 # 開方 13 sortedDistance = distances.argsort()# 從小到大排序 14 classCount = {} 15 for i in range(k): 16 vlabel = y_data[sortedDistance[i]] # 獲取標簽 17 classCount[vlabel] = classCount.get(vlabel,0)+1# 統計標簽數量 18 sortedClassCount = sorted(classCount.items(),key = operator.itemgetter(1), reverse = True) # 根據operator.itemgetter(1)-第1個值對classCount排序,然后再取倒序 19 return sortedClassCount[0][0] 20 iris = datasets.load_iris()# 載入數據 21 x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.3) 22 #打亂數據 23 # data_size = iris.data.shape[0] 24 # index = [i for i in range(data_size)] 25 # random.shuffle(index) 26 # iris.data = iris.data[index] 27 # iris.target = iris.target[index] 28 # test_size = 40#切分數據集 29 # x_train = iris.data[test_size:] 30 # x_test = iris.data[:test_size] 31 # y_train = iris.target[test_size:] 32 # y_test = iris.target[:test_size] 33 prodictions = [] 34 for i in range(x_test.shape[0]): 35 prodictions.append(knn(x_test[i],x_train,y_train,5)) 36 print(prodictions) 37 print(classification_report(y_test, prodictions)) 38 print(confusion_matrix(y_test,prodictions)) 39 #關於混淆矩陣可以看這篇博客,#https://www.cnblogs.com/missidiot/p/9450662.html

 

 1 # 導入算法包以及數據集
 2 from sklearn import neighbors
 3 from sklearn import datasets
 4 from sklearn.model_selection import train_test_split
 5 from sklearn.metrics import classification_report
 6 import random
 7 # 載入數據
 8 iris = datasets.load_iris()
 9 #print(iris)
10 # 打亂數據切分數據集
11 # x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.2) #分割數據0.2為測試數據,0.8為訓練數據
12 
13 #打亂數據
14 data_size = iris.data.shape[0]
15 index = [i for i in range(data_size)]
16 random.shuffle(index)
17 iris.data = iris.data[index]
18 iris.target = iris.target[index]
19 
20 #切分數據集
21 test_size = 40
22 x_train = iris.data[test_size:]
23 x_test =  iris.data[:test_size]
24 y_train = iris.target[test_size:]
25 y_test = iris.target[:test_size]
26 
27 # 構建模型
28 model = neighbors.KNeighborsClassifier(n_neighbors=3)
29 model.fit(x_train, y_train)
30 prediction = model.predict(x_test)
31 print(prediction)
32 print(classification_report(y_test, prediction))

這三個代碼第一個,第二個是根據底層原理實現knn算法,第三個則是調用庫函數處理數據。

 下面一個代碼是利用第三個代碼中用到的庫實現第一個代碼功能,可以發現使用系統提供的庫,簡單許多

 1 from sklearn import  neighbors
 2 from sklearn.model_selection import train_test_split
 3 from sklearn.metrics import classification_report
 4 import numpy as np
 5 x_data = np.array([[3,104],
 6                    [2,100],
 7                    [1,81],
 8                    [101,10],
 9                    [99,5],
10                    [81,2]])
11 y_data = np.array(['A','A','A','B','B','B'])
12 x_test1 = np.array([[18,90]])
13 x_train, x_test, y_train,y_test = train_test_split(x_data, y_data,test_size= 0.3)
14 model = neighbors.KNeighborsClassifier(n_neighbors=3)
15 model.fit(x_train, y_train)
16 print(x_test1)
17 prediction = model.predict(x_test1)
18 print(prediction)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM