python庫之——sklearn


機器學習庫sklearn

官方documentation(資料)中分為不同的部分:

 

其中我們主要講User Guide(機器學習算法理論介紹)、API(程序實現方法):

一、User Guide

https://scikit-learn.org/stable/user_guide.html

模塊 說明
Supervised learning監督學習 監督學習的各種算法介紹
Unsupervised learning非監督學習 非監督學習的各種算法介紹
Model selection and evaluation模型選擇和評價
交叉驗證、調參、模型評價、驗證曲線
Inspection檢查  
Dataset transformations數據轉換 特征抽取、數據預處理、缺失值處理、非監督降維方法、隨機投影、核近似、轉換預測目標
Dataset loading utilities數據下載程序 玩具數據、真實數據集、生成數據、下載其它數據
Computing with scikit-learn利用sklearn計算 對大數據集的計算策略、計算表現、並行計算、資源管理和配置

二、api

和前面的內容對應,這個內容里給了在sklearn里的實現方法。

模塊 功能

sklearn.base module: Base classes and utility functions
sklearn.calibration module: Probability Calibration(標准、標定)
sklearn.cluster: Clustering
sklearn.cluster.bicluster: Biclustering
sklearn.compose: Composite Estimators
sklearn.covariance: Covariance Estimators(協方差)
sklearn.cross_decomposition: Cross decomposition(交叉分解)
sklearn.datasets: Datasets
sklearn.decomposition: Matrix Decomposition
sklearn.discriminant_analysis: Discriminant Analysis(判別分析)
sklearn.dummy: Dummy estimators
sklearn.ensemble: Ensemble Methods
sklearn.exceptions module(exceptions模塊): Exceptions and warnings
sklearn.experimental: Experimental
sklearn.feature_extraction: Feature Extraction
sklearn.feature_selection: Feature Selection
sklearn.gaussian_process: Gaussian Processes
sklearn.isotonic: Isotonic regression
sklearn.impute: Impute
sklearn.kernel_approximation Kernel Approximation
sklearn.kernel_ridge Kernel Ridge Regression
sklearn.linear_model: Generalized Linear Models?
sklearn.manifold: Manifold Learning
sklearn.metrics: Metrics
sklearn.mixture: Gaussian Mixture Models
sklearn.model_selection: Model Selection
sklearn.multiclass: Multiclass and multilabel classification
sklearn.multioutput: Multioutput regression and classification
sklearn.naive_bayes: Naive Bayes
sklearn.neighbors: Nearest Neighbors
sklearn.neural_network: Neural network models
sklearn.pipeline: Pipeline
sklearn.inspection: inspection
sklearn.preprocessing: Preprocessing and Normalization
sklearn.random_projection: Random projection?
sklearn.random_projection: Random projection?
sklearn.svm: Support Vector Machines?
sklearn.tree: Decision Trees?
sklearn.utils: Utilities(實用程序)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM