1.注冊中國大學MOOC
2.選擇北京理工大學嵩天老師的《Python網絡爬蟲與信息提取》MOOC課程
3.學習完成第0周至第4周的課程內容,並完成各周作業
Requests庫的爬取性能分析
(1)京東商品頁面的爬取
import requests
url = "https://item.jd.com/2967929.html"
try:
r = requests.get(url)
r.raise_for_status()
r.encoding = r.apparent_encoding
print(r.text[:1000])
except:
print("爬取失敗")
(2)亞馬遜商品頁面的爬取
import requests
url = "https://www.amazon.cn/gp/product/B01M8L5Z3Y"
try:
kv = {'user-agent':'Mozilla/5.0'}
r = requests.get(url,headers=kv)
r.raise_for_status()
r.encoding = r.apparent_encoding
print(r.text[0:500])
except:
print("爬取失敗")
(3)搜索引擎提交接口
(百度)(360)
import requests
keyword = "python"
try:
kv = {'wd':keyword}
r = requests.get("http://www.so.com/s",params=kv)
#r = requests.get("http://www.baidu.com/s",params=kv)
print(r.request.url)
r.raise_for_status()
#r.encoding = r.apparent_encoding
print(len(r.text))
except:
print("爬取失敗")
(4)網絡圖片的爬取和儲存
import requests
import os
url = "http://image.nationalgeographic.com.cn/2017/0211/20170211061910157.jpg"
root = "E://pics//"
path = root + url.split('/')[-1]
try:
if not os.path.exitsis(root):
os.mkdir(root)
if not os.path.exitsis(root):
r = requests.get(url)
with open(path, 'wb') as f:
f.write(r.content)
f.close()
print("文件保存成功")
else:
print("文件已存在")
except:
print("爬取失敗")
(5)ip地址歸屬地查詢
import requests
url = "http://m.ip138.com/ip.asp?ip="
try:
r = requests.get(url+'202.204.80.112')
r.raise_for_status()
r.encoding = r.apparent_encoding
print(r.text[-500:])
except:
print("爬取失敗")
(6)100次測試成功所需時間
import requests
def getHTMLText(url):
try:
r=requests.get(url,timeout=30)
r.raise_for_status() #如果狀態不是200,引發HTTPError異常
r.encoding = r.apparent_encoding
return r.text
except:
return '產生異常'
def time_count(url):
import time
time_start= time.time()
count=1
while True:
a=getHTMLText(url)
if a != '產生異常':
print('第{}次爬取成功'.format(count))
count+=1
if count == 101:
break
time_end= time.time()
print('100次測試成功所需時間',time_end-time_start,'s')
if __name__=='__main__':
url = 'https://www.baidu.com'
time_count(url)

中國大學排名定向爬蟲(優化)
import requests
from bs4 import BeautifulSoup
import bs4
def getHTMLText(url):
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return ""
def fillUnivList(ulist, html):
soup = BeautifulSoup(html, "html.parser")
for tr in soup.find('tbody').children:
if isinstance(tr, bs4.element.Tag):
tds = tr('td')
ulist.append([tds[0].string, tds[1].string, tds[3].string])
def printUnivList(ulist, num):
tplt = "{0:^10}\t{1:{3}^10}\t{2:^10}"
print(tplt.format("排名","學校名稱","總分",chr(12288)))
for i in range(num):
u=ulist[i]
print(tplt.format(u[0],u[1],u[2],chr(12288)))
def main():
uinfo = []
url = 'https://www.zuihaodaxue.cn/zuihaodaxuepaiming2016.html'
html = getHTMLText(url)
fillUnivList(uinfo, html)
printUnivList(uinfo, 20) # 20 univs
main()

淘寶商品比價定向爬蟲:
import requests
import re
def getHTMLText(url):
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return ""
def parsePage(ilt, html):
try:
plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html)
tlt = re.findall(r'\"raw_title\"\:\".*?\"',html)
for i in range(len(plt)):
price = eval(plt[i].split(':')[1])
title = eval(tlt[i].split(':')[1])
ilt.append([price , title])
except:
print("")
def printGoodsList(ilt):
tplt = "{:4}\t{:8}\t{:16}"
print(tplt.format("序號", "價格", "商品名稱"))
count = 0
for g in ilt:
count = count + 1
print(tplt.format(count, g[0], g[1]))
def main():
goods = '書包'
depth = 3
start_url = 'https://s.taobao.com/search?q=' + goods
infoList = []
for i in range(depth):
try:
url = start_url + '&s=' + str(44*i)
html = getHTMLText(url)
parsePage(infoList, html)
except:
continue
printGoodsList(infoList)
main()
股票數據定向爬蟲(優化):
import requests
from bs4 import BeautifulSoup
import traceback
import re
def getHTMLText(url, code="utf-8"):
try:
r = requests.get(url)
r.raise_for_status()
r.encoding = code
return r.text
except:
return ""
def getStockList(lst, stockURL):
html = getHTMLText(stockURL, "GB2312")
soup = BeautifulSoup(html, 'html.parser')
a = soup.find_all('a')
for i in a:
try:
href = i.attrs['href']
lst.append(re.findall(r"[s][hz]\d{6}", href)[0])
except:
continue
def getStockInfo(lst, stockURL, fpath):
count = 0
for stock in lst:
url = stockURL + stock + ".html"
html = getHTMLText(url)
try:
if html=="":
continue
infoDict = {}
soup = BeautifulSoup(html, 'html.parser')
stockInfo = soup.find('div',attrs={'class':'stock-bets'})
name = stockInfo.find_all(attrs={'class':'bets-name'})[0]
infoDict.update({'股票名稱': name.text.split()[0]})
keyList = stockInfo.find_all('dt')
valueList = stockInfo.find_all('dd')
for i in range(len(keyList)):
key = keyList[i].text
val = valueList[i].text
infoDict[key] = val
with open(fpath, 'a', encoding='utf-8') as f:
f.write( str(infoDict) + '\n' )
count = count + 1
print("\r當前進度: {:.2f}%".format(count*100/len(lst)),end="")
except:
count = count + 1
print("\r當前進度: {:.2f}%".format(count*100/len(lst)),end="")
continue
def main():
stock_list_url = 'https://quote.eastmoney.com/stocklist.html'
stock_info_url = 'https://gupiao.baidu.com/stock/'
output_file = 'D:/BaiduStockInfo.txt'
slist=[]
getStockList(slist, stock_list_url)
getStockInfo(slist, stock_info_url, output_file)
main()
股票數據Scrapy爬蟲
# -*- coding: utf-8 -*-
import scrapy
import re
class StocksSpider(scrapy.Spider):
name = "stocks"
start_urls = ['https://quote.eastmoney.com/stocklist.html']
def parse(self, response):
for href in response.css('a::attr(href)').extract():
try:
stock = re.findall(r"[s][hz]\d{6}", href)[0]
url = 'https://gupiao.baidu.com/stock/' + stock + '.html'
yield scrapy.Request(url, callback=self.parse_stock)
except:
continue
def parse_stock(self, response):
infoDict = {}
stockInfo = response.css('.stock-bets')
name = stockInfo.css('.bets-name').extract()[0]
keyList = stockInfo.css('dt').extract()
valueList = stockInfo.css('dd').extract()
for i in range(len(keyList)):
key = re.findall(r'>.*</dt>', keyList[i])[0][1:-5]
try:
val = re.findall(r'\d+\.?.*</dd>', valueList[i])[0][0:-5]
except:
val = '--'
infoDict[key]=val
infoDict.update(
{'股票名稱': re.findall('\s.*\(',name)[0].split()[0] + \
re.findall('\>.*\<', name)[0][1:-1]})
yield infoDict
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
class BaidustocksPipeline(object):
def process_item(self, item, spider):
return item
class BaidustocksInfoPipeline(object):
def open_spider(self, spider):
self.f = open('BaiduStockInfo.txt', 'w')
def close_spider(self, spider):
self.f.close()
def process_item(self, item, spider):
try:
line = str(dict(item)) + '\n'
self.f.write(line)
except:
pass
return item
settings.py文件中被修改的區域:
# Configure item pipelines
# See https://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
'BaiduStocks.pipelines.BaidustocksInfoPipeline': 300,
}
4.提供圖片或網站顯示的學習進度,證明學習的過程。

5.寫一篇不少於1000字的學習筆記,談一下學習的體會和收獲。
剛開始對爬蟲僅停留在基礎的位置,並不是很了解。但通過爬蟲的這門入門啟蒙課程,個人覺得非常適合python初學者,復習掌握python基本編程語法后,就可以開始學習這門課程,通過幾周嵩老師的講解和編寫爬蟲實例,驚嘆python語言的魅力所在,高效與快捷增加了我對python爬蟲深入學習的興趣。
一開始需要環境配置,安裝各種第三方模塊等等,有些東西看懂了,但結果自己寫代碼還是很困難,所以其實個人覺得盡量不要系統地去啃一些東西,根據嵩老師課程上的實例,舉一反三,找一些其他的例子入手,這樣反而更容易掌握。因為爬蟲這種技術,既不需要系統的精通一門語言,也不需要多么高深的數據庫技術,從實操中去學習python中零散的知識,可能可以保證每次學到的都是最需要的部分。
在此次課程的學習中特別注意到一個修改User-Agent爬蟲防屏蔽策略。User-Agent是一種最常見的偽裝瀏覽器的手段。User-Agent是指包含瀏覽器信息、操作系統信息等的一個字符串,也稱之為一種特殊的網絡協議。服務器通過它判斷當前訪問對象是瀏覽器、郵件客戶端還是網絡爬蟲。在request.headers里可以查看user-agent,關於怎么分析數據包、查看其User-Agent等信息,這個在前面的文章里提到過。具體方法可以把User-Agent的值改為瀏覽器的方式,甚至可以設置一個User-Agent池(list,數組,字典都可以),存放多個“瀏覽器”,每次爬取的時候隨機取一個來設置request的User-Agent,這樣User-Agent會一直在變化,防止被牆。在爬取中國大學排名出現的問題,,用requests和BeautifulSoup庫是無法獲取它的信息的,其次還要網站robots協議是否符合相關規定。爬取總體分成三個步驟:從網絡上獲取大學排名網頁內容,定義函數數:getHTMLText();提取網頁中信息並放到合適的數據結構定義函數:fillUnivList();利用數據結構展示並輸出結果,定義函數:printUnivList()有了這三個函數,我們可以把程序封裝成這三個模塊,可讀性更好。
使用bs4進行xml解析時,由於每個節點屬性不完全相同,當統一使用一個方法訪問節點屬性的時候一定要加try,防止程序意外中斷;在使用python語言的時候,為了安全,要注意函數的返回值,特別是類型判斷;網頁抓取要用try,動態數據類型盡量也要。對於url請求分析有三點,認真分析頁面結構,查看js響應的動作;借助瀏覽器分析js點擊動作所發出的請求url;將此異步請求的url作為scrapy再次進行抓取。
課程上最后一周還講了Scrapy框架,它是Python開發的一個快速、高層次的屏幕抓取和web抓取框架,用於抓取web站點並從頁面中提取結構化的數據。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試。Scrapy吸引人的地方在於它是一個框架,任何人都可以根據需求方便的修改。它也提供了多種類型爬蟲的基類。
