java實現spark常用算子之coalesce




import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

/**
* coalesce 算子: 將N個分區 合並為 N-M個分區
* 分區合並(減少),在filter后使用效果更佳,可以有效避免數據傾斜問題
*
*/
public class CoalesceOperator {
public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("coalesce");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> names = Arrays.asList("w1","w2","w3","w4","w5");

JavaRDD<String> nameRdd = sc.parallelize(names,4);

JavaRDD<String> namefristRdd = nameRdd.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception {
List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("1["+index+"]:"+iterator.next());
}
return list.iterator();
}
},true);

// 將 4 個partition減少為2個partition
JavaRDD<String> tempRdd = namefristRdd.coalesce(2);

JavaRDD<String> result = tempRdd.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception {
List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("2["+index+"]:"+iterator.next());
}
return list.iterator();
}
},false);

result.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.err.println(s);
}
});


}
}

微信掃描下圖二維碼加入博主知識星球,獲取更多大數據、人工智能、算法等免費學習資料哦!

 
         
         
       


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM