java實現spark常用算子之flatmap



import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

/**
* flatmap 算子:
* 一對多 處理數據
*/
public class FlatMapOperator {

public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("flatmap");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> list = Arrays.asList("w1 1","w2 2","w3 3","w4 4");

JavaRDD<String> listRdd = sc.parallelize(list);

JavaRDD<String> result = listRdd.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")).iterator();
}
});

result.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.err.println(s);
}
});
}
}

微信掃描下圖二維碼加入博主知識星球,獲取更多大數據、人工智能、算法等免費學習資料哦!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM