我本來就是處理時間序列異常檢測的,之前用了全連接層以及CNN層組成的AE去擬合原始時間序列,發現效果不佳。當利用LSTM組成AE去擬合時間序列時發現,擬合的效果很好。但是,利用重構誤差去做異常檢測這條路依舊不通,因為發現異常曲線的擬合效果也很好……算了,這次先不打算做時間序列異常檢測了。在這里把“基於LSTM的auto-encoder”的代碼分享出來。
代碼參考了Jason Brownlee大佬修改的:具體鏈接我找不到了,當他的博客我還能找到,感興趣自己翻一翻,記得在LSTM網絡那一章
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
from keras.layers import Input, Dense, LSTM from keras.models import Model from keras import backend as K import numpy as np from pandas import read_csv from matplotlib import pyplot import numpy from numpy import array from keras.models import Sequential from keras.layers import RepeatVector from keras.layers import TimeDistributed from keras.utils import plot_model #導入數據,前8000個正常樣本,剩下的樣本包括正常和異常時間序列,每個樣本是1行48列 dataset = read_csv('randperm_zerone_Dataset.csv') values = dataset.values XY= values n_train_hours1 =7000 n_train_hours3 =8000 trainX=XY[:n_train_hours1,:] validX =XY[n_train_hours1:n_train_hours3, :] testX =XY[n_train_hours3:, :] train3DX = trainX.reshape((trainX.shape[0], trainX.shape[1],1)) valid3DX =validX.reshape((validX.shape[0], validX.shape[1],1)) test3DX = testX.reshape((testX.shape[0],testX.shape[1],1)) # 編碼器 sequence = train3DX # reshape input into [samples, timesteps, features] n_in = 48 # define model model = Sequential() model.add(LSTM(100, activation='relu', input_shape=(n_in,1))) model.add(RepeatVector(n_in)) model.add(LSTM(100, activation='relu', return_sequences=True)) model.add(TimeDistributed(Dense(1))) model.compile(optimizer='adam', loss='mse') model.summary() # fit model history=model.fit(train3DX, train3DX, shuffle=True,epochs=300,validation_data=(valid3DX, valid3DX)) pyplot.plot(history.history['loss'], label='train') pyplot.plot(history.history['val_loss'], label='valid') pyplot.legend() pyplot.show() # demonstrate recreation yhat = model.predict(sequence) ReconstructedData=yhat.reshape((yhat.shape[0], -1)) numpy.savetxt("ReconstructedData.csv", ReconstructedData, delimiter=',')