In a deck of cards, each card has an integer written on it.
Return true
if and only if you can choose X >= 2
such that it is possible to split the entire deck into 1 or more groups of cards, where:
- Each group has exactly
X
cards. - All the cards in each group have the same integer.
Example 1:
Input: [1,2,3,4,4,3,2,1]
Output: true
Explanation: Possible partition [1,1],[2,2],[3,3],[4,4]
Example 2:
Input: [1,1,1,2,2,2,3,3]
Output: false Explanation: No possible partition.
Example 3:
Input: [1]
Output: false Explanation: No possible partition.
Example 4:
Input: [1,1]
Output: true Explanation: Possible partition [1,1]
Example 5:
Input: [1,1,2,2,2,2]
Output: true Explanation: Possible partition [1,1],[2,2],[2,2]
Note:
1 <= deck.length <= 10000
0 <= deck[i] < 10000
這道題給了一堆牌,問我們能不能將這副牌分成若干堆,每堆均有X個,且每堆的牌數字都相同(這里不考慮花色)。既然要將相同的牌歸類,肯定要統計每種牌出現的個數,所以使用一個 HashMap 來建立牌跟其出現次數之間的映射。由於每堆X個,則若果某張牌的個數小於X,則肯定無法分,所以X的范圍是可以確定的,為 [2, mn],其中 mn 是數量最少的牌的個數。遍歷一遍 HashMap,找出最小的映射值 mn,若 mn 小於2,可以直接返回 false。否則就從2遍歷到 mn,依次來檢驗候選值X。檢驗的方法是看其他每種牌的個數是否能整除候選值X,不一定非要相等,比如 [1, 1, 2, 2, 2, 2], K=2 時就可以分為三堆 [1, 1], [2, 2], [2, 2],即相同的牌也可以分到其他堆里,所以只要每種牌的個數能整除X即可,一旦有牌數不能整除X了,則當前X一定不行,還得繼續檢驗下一個X值;若所有牌數都能整除X,可以返回 true。循環結束后返回 false,參見代碼如下:
解法一:
class Solution {
public:
bool hasGroupsSizeX(vector<int>& deck) {
unordered_map<int, int> cardCnt;
for (int card : deck) ++cardCnt[card];
int mn = INT_MAX;
for (auto &a : cardCnt) mn = min(mn, a.second);
if (mn < 2) return false;
for (int i = 2; i <= mn; ++i) {
bool success = true;
for (auto &a : cardCnt) {
if (a.second % i != 0) {
success = false;
break;
}
}
if (success) return true;
}
return false;
}
};
上面的解法是博主自己的解法,論壇上好多人使用了一個基於最大公約數 Greatest Common Divisor 的解法,寫起來很簡潔,但需要記住最大公約函數的寫法,或者直接使用內置的 gcd 函數(感覺有點耍賴哈~)。其實原理都差不多,這里是找每種牌數之間的最大公約數,只要這個 gcd 是大於1的,就表示可以找到符合題意的X,參見代碼如下:
解法二:
class Solution {
public:
bool hasGroupsSizeX(vector<int>& deck) {
unordered_map<int, int> cardCnt;
for (int card : deck) ++cardCnt[card];
int res = 0;
for (auto &a : cardCnt) {
res = gcd(a.second, res);
}
return res > 1;
}
int gcd(int a, int b) {
return a == 0 ? b : gcd(b % a, a);
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/914
參考資料:
https://leetcode.com/problems/x-of-a-kind-in-a-deck-of-cards/
[LeetCode All in One 題目講解匯總(持續更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)