tf.concat的用法




import numpy as np
import tensorflow as tf
sess=tf.Session()
a=np.zeros((1,2,3,4))
b=np.ones((1,2,3,4))
c1 = tf.concat([a, b], axis=-1) # 倒數第一維度增加,其它不變
d1=sess.run(c1)
print('d1=',d1)
print('d1.shape=',d1.shape)
c = tf.concat([a, b], axis=-2) #倒數第二維度增加,其它不變
d=sess.run(c)
print('d=',d)
print('d.shape=',d.shape)
a1=np.zeros((3,4))
b1=np.ones((3,4))
c2 = tf.concat([a1, b1], axis=-1) # 如果是二維就和axis=1一樣,第2維坐標增加,就是行不變,列增加
d2=sess.run(c2)
print('d2=',d2)
print('d2.shape=',d2.shape)

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM