Linux內核device結構體分析


1、前言

Linux內核中的設備驅動模型,是建立在sysfs設備文件系統和kobject上的,由總線(bus)、設備(device)、驅動(driver)和類(class)所組成的關系結構,在底層,Linux系統中的每個設備都有一個device結構體的實例,本文將對Linux內核的device結構體以及相關結構進行簡要分析。

 

2、device結構體

在Linux內核源碼中,struct device結構體的定義在include/linux/device.h中,實現的主要方法在drivers/base/core.c文件中,device結構體的定義如下所示:

struct device {
    struct device        *parent;

    struct device_private    *p;

    struct kobject kobj;
    const char        *init_name; /* initial name of the device */
    const struct device_type *type;

    struct mutex        mutex;    /* mutex to synchronize calls to
                     * its driver.
                     */

    struct bus_type    *bus;        /* type of bus device is on */
    struct device_driver *driver;    /* which driver has allocated this
                       device */
    void        *platform_data;    /* Platform specific data, device
                       core doesn't touch it */
    void        *driver_data;    /* Driver data, set and get with
                       dev_set/get_drvdata */
    struct dev_links_info    links;
    struct dev_pm_info    power;
    struct dev_pm_domain    *pm_domain;

#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
    struct irq_domain    *msi_domain;
#endif
#ifdef CONFIG_PINCTRL
    struct dev_pin_info    *pins;
#endif
#ifdef CONFIG_GENERIC_MSI_IRQ
    struct list_head    msi_list;
#endif

#ifdef CONFIG_NUMA
    int        numa_node;    /* NUMA node this device is close to */
#endif
    const struct dma_map_ops *dma_ops;
    u64        *dma_mask;    /* dma mask (if dma'able device) */
    u64        coherent_dma_mask;/* Like dma_mask, but for
                         alloc_coherent mappings as
                         not all hardware supports
                         64 bit addresses for consistent
                         allocations such descriptors. */
    unsigned long    dma_pfn_offset;

    struct device_dma_parameters *dma_parms;

    struct list_head    dma_pools;    /* dma pools (if dma'ble) */

    struct dma_coherent_mem    *dma_mem; /* internal for coherent mem
                         override */
#ifdef CONFIG_DMA_CMA
    struct cma *cma_area;        /* contiguous memory area for dma
                       allocations */
#endif
    /* arch specific additions */
    struct dev_archdata    archdata;

    struct device_node    *of_node; /* associated device tree node */
    struct fwnode_handle    *fwnode; /* firmware device node */

    dev_t            devt;    /* dev_t, creates the sysfs "dev" */
    u32            id;    /* device instance */

    spinlock_t        devres_lock;
    struct list_head    devres_head;

    struct klist_node    knode_class;
    struct class        *class;
    const struct attribute_group **groups;    /* optional groups */

    void    (*release)(struct device *dev);
    struct iommu_group    *iommu_group;
    struct iommu_fwspec    *iommu_fwspec;

    bool            offline_disabled:1;
    bool            offline:1;
    bool            of_node_reused:1;
};

部分結構體成員解釋:

parent:指向設備的“父”設備,它所連接的設備,在大多數情況下,父設備是某種總線或主機控制器,如果該成員為NULL,則該設備為頂級設備;

p:用於保存設備驅動核心部分的私有數據;

kobj:嵌入的struct kobject對象實例;

init_name:設備的初始名稱

type:設備的類型,用於標識設備類型並攜帶特定類型信息;

mutex:用於同步的互斥鎖;

bus:該設備所處於的總線;

driver:該設備所分配的驅動程序;

platform_data:設備中特定的平台數據;

driver_data:指向驅動程序特定的私有數據;

of_node:與設備數相聯系的結構體指針;

devt:用於表示設備的設備號;

devres_lock:保護設備資源的自旋鎖;

devres_head:設備資源的雙向鏈表頭;

knode_class:接入class鏈表時所需要的klist節點;

class:指向設備所屬class的指針;

groups:該設備的屬性集合;

release:函數指針,當設備需要釋放時調用此函數。

 

device結構體中有一部分成員不願意被外界看到,所以抽象出了struct device_private這個結構體,該結構體包括了設備驅動模型內部的鏈接,結構體定義如下:

struct device_private {
    struct klist klist_children;
    struct klist_node knode_parent;
    struct klist_node knode_driver;
    struct klist_node knode_bus;
    struct list_head deferred_probe;
    struct device *device;
};

部分結構體成員解釋:

klist_children:子設備的klist鏈表;

knode_parent:接入父設備的klist_children時所需要的klist節點;

knode_driver:接入驅動的設備鏈表時所需要的klist節點;

knode_bus:接入總線的設備鏈表時所需要的klist節點;

device:回指struct device結構體的指針。

 

device結構體中包含了一個struct device_type結構體的指針,用於描述設備的類型,該結構體定義如下:

struct device_type {
    const char *name;
    const struct attribute_group **groups;
    int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
    char *(*devnode)(struct device *dev, umode_t *mode,
             kuid_t *uid, kgid_t *gid);
    void (*release)(struct device *dev);

    const struct dev_pm_ops *pm;
};

該結構體功能類似於kobj_type。

 

還有一個設備屬性結構體,名稱為struct device_attribute,是對struct attribute的進一步封裝,並提供了設備屬性的讀寫函數指針,結構體定義如下:

/* interface for exporting device attributes */
struct device_attribute {
    struct attribute    attr;
    ssize_t (*show)(struct device *dev, struct device_attribute *attr,
            char *buf);
    ssize_t (*store)(struct device *dev, struct device_attribute *attr,
             const char *buf, size_t count);
};

其它的一些struct device結構體成員,例如archdata、dma和devres等,是一些設備特有的東西,暫時不討論,本文主要關心設備驅動模型的基本建立。

 

3、device的實現

接下來對device的實現進行簡單分析,實現的方法主要在文件core.c中:

int __init devices_init(void)
{
    devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);///sys/devices目錄
    if (!devices_kset)
        return -ENOMEM;
    dev_kobj = kobject_create_and_add("dev", NULL);///sys/dev目錄
    if (!dev_kobj)
        goto dev_kobj_err;
    sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);///sys/dev/block目錄
    if (!sysfs_dev_block_kobj)
        goto block_kobj_err;
    sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);///sys/dev/char目錄
    if (!sysfs_dev_char_kobj)
        goto char_kobj_err;

    return 0;

 char_kobj_err:
    kobject_put(sysfs_dev_block_kobj);
 block_kobj_err:
    kobject_put(dev_kobj);
 dev_kobj_err:
    kset_unregister(devices_kset);
    return -ENOMEM;
}

devices_init()函數是在設備驅動模型初始化時調用的部分初始函數,它實現的功能是建立sysfs中的devices目錄和dev目錄,然后在dev目錄下建立block和char兩個子目錄,block和char目錄用來存放設備號文件。

#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)

static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
                 char *buf)
{
    struct device_attribute *dev_attr = to_dev_attr(attr);
    struct device *dev = kobj_to_dev(kobj);
    ssize_t ret = -EIO;

    if (dev_attr->show)
        ret = dev_attr->show(dev, dev_attr, buf);
    if (ret >= (ssize_t)PAGE_SIZE) {
        print_symbol("dev_attr_show: %s returned bad count\n",
                (unsigned long)dev_attr->show);
    }
    return ret;
}

static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
                  const char *buf, size_t count)
{
    struct device_attribute *dev_attr = to_dev_attr(attr);
    struct device *dev = kobj_to_dev(kobj);
    ssize_t ret = -EIO;

    if (dev_attr->store)
        ret = dev_attr->store(dev, dev_attr, buf, count);
    return ret;
}

static const struct sysfs_ops dev_sysfs_ops = {
    .show    = dev_attr_show,
    .store    = dev_attr_store,
};

to_dev_attr()宏定義用來獲取struct device_attribute結構體的首地址,dev_sysfs_ops結構體的內容就是device注冊到sysfs設備文件系統的操作函數,dev_attr_show()和dev_attr_store()函數會調用struct device_attribute結構體內的讀寫屬性相關函數。

static void device_release(struct kobject *kobj)
{
    struct device *dev = kobj_to_dev(kobj);
    struct device_private *p = dev->p;

    /*
     * Some platform devices are driven without driver attached
     * and managed resources may have been acquired.  Make sure
     * all resources are released.
     *
     * Drivers still can add resources into device after device
     * is deleted but alive, so release devres here to avoid
     * possible memory leak.
     */
    devres_release_all(dev);

    if (dev->release)
        dev->release(dev);
    else if (dev->type && dev->type->release)
        dev->type->release(dev);
    else if (dev->class && dev->class->dev_release)
        dev->class->dev_release(dev);
    else
        WARN(1, KERN_ERR "Device '%s' does not have a release() "
            "function, it is broken and must be fixed.\n",
            dev_name(dev));
    kfree(p);
}

static const void *device_namespace(struct kobject *kobj)
{
    struct device *dev = kobj_to_dev(kobj);
    const void *ns = NULL;

    if (dev->class && dev->class->ns_type)
        ns = dev->class->namespace(dev);

    return ns;
}

static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
{
    struct device *dev = kobj_to_dev(kobj);

    if (dev->class && dev->class->get_ownership)
        dev->class->get_ownership(dev, uid, gid);
}

static struct kobj_type device_ktype = {
    .release    = device_release,
    .sysfs_ops    = &dev_sysfs_ops,
    .namespace    = device_namespace,
    .get_ownership    = device_get_ownership,
};

當struct device結構體內的實例kobject引用計數到0時會調用device_release()函數來釋放掉device,函數調用時,會先通過kobj指針獲取device的首地址,然后判斷device下的release()是否存在,如果存在則調用,否則,依次判斷device下device_type下的release()和device下class下的dev_release()函數是否存在,存在則調用,最后將device_private結構體指針指向的內存釋放掉。

static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
{
    struct kobj_type *ktype = get_ktype(kobj);

    if (ktype == &device_ktype) {
        struct device *dev = kobj_to_dev(kobj);
        if (dev->bus)
            return 1;
        if (dev->class)
            return 1;
    }
    return 0;
}

static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
{
    struct device *dev = kobj_to_dev(kobj);

    if (dev->bus)
        return dev->bus->name;
    if (dev->class)
        return dev->class->name;
    return NULL;
}

static int dev_uevent(struct kset *kset, struct kobject *kobj,
              struct kobj_uevent_env *env)
{
    struct device *dev = kobj_to_dev(kobj);
    int retval = 0;

    /* add device node properties if present */
    if (MAJOR(dev->devt)) {
        const char *tmp;
        const char *name;
        umode_t mode = 0;
        kuid_t uid = GLOBAL_ROOT_UID;
        kgid_t gid = GLOBAL_ROOT_GID;

        add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
        add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
        name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
        if (name) {
            add_uevent_var(env, "DEVNAME=%s", name);
            if (mode)
                add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
            if (!uid_eq(uid, GLOBAL_ROOT_UID))
                add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
            if (!gid_eq(gid, GLOBAL_ROOT_GID))
                add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
            kfree(tmp);
        }
    }

    if (dev->type && dev->type->name)
        add_uevent_var(env, "DEVTYPE=%s", dev->type->name);

    if (dev->driver)
        add_uevent_var(env, "DRIVER=%s", dev->driver->name);

    /* Add common DT information about the device */
    of_device_uevent(dev, env);

    /* have the bus specific function add its stuff */
    if (dev->bus && dev->bus->uevent) {
        retval = dev->bus->uevent(dev, env);
        if (retval)
            pr_debug("device: '%s': %s: bus uevent() returned %d\n",
                 dev_name(dev), __func__, retval);
    }

    /* have the class specific function add its stuff */
    if (dev->class && dev->class->dev_uevent) {
        retval = dev->class->dev_uevent(dev, env);
        if (retval)
            pr_debug("device: '%s': %s: class uevent() "
                 "returned %d\n", dev_name(dev),
                 __func__, retval);
    }

    /* have the device type specific function add its stuff */
    if (dev->type && dev->type->uevent) {
        retval = dev->type->uevent(dev, env);
        if (retval)
            pr_debug("device: '%s': %s: dev_type uevent() "
                 "returned %d\n", dev_name(dev),
                 __func__, retval);
    }

    return retval;
}

static const struct kset_uevent_ops device_uevent_ops = {
    .filter =    dev_uevent_filter,
    .name =        dev_uevent_name,
    .uevent =    dev_uevent,
};

kset_uevent_ops結構體內的函數是用於管理kset內部的kobject的uevent操作的,其中,filter()函數用於阻止一個kobject向用戶空間發送uevent,當函數的返回值為0時表示阻止,在上面的dev_uevent_filter()函數中檢查了device所屬的bus或者class是否存在,如果都不存在,則返回0,也就是沒有發送uevent的必要了,name()函數用於覆蓋kset發送給用戶空間的名稱,在上面的dev_uevent_name()函數選擇使用device所屬的bus或者class的名稱,uevent()函數是在uevent將被發送到用戶空間之前進行調用的,用於向uevent中增加新的環境變量。

static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
               char *buf)
{
    struct kobject *top_kobj;
    struct kset *kset;
    struct kobj_uevent_env *env = NULL;
    int i;
    size_t count = 0;
    int retval;

    /* search the kset, the device belongs to */
    top_kobj = &dev->kobj;
    while (!top_kobj->kset && top_kobj->parent)
        top_kobj = top_kobj->parent;
    if (!top_kobj->kset)
        goto out;

    kset = top_kobj->kset;
    if (!kset->uevent_ops || !kset->uevent_ops->uevent)
        goto out;

    /* respect filter */
    if (kset->uevent_ops && kset->uevent_ops->filter)
        if (!kset->uevent_ops->filter(kset, &dev->kobj))
            goto out;

    env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
    if (!env)
        return -ENOMEM;

    /* let the kset specific function add its keys */
    retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
    if (retval)
        goto out;

    /* copy keys to file */
    for (i = 0; i < env->envp_idx; i++)
        count += sprintf(&buf[count], "%s\n", env->envp[i]);
out:
    kfree(env);
    return count;
}

static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
                const char *buf, size_t count)
{
    if (kobject_synth_uevent(&dev->kobj, buf, count))
        dev_err(dev, "uevent: failed to send synthetic uevent\n");

    return count;
}
static DEVICE_ATTR_RW(uevent);

device不僅在kset中添加了對uevent的管理,還把uevent信息封裝成設備的一個屬性文件uevent,其權限為擁有者可讀寫,其中uevent_show()函數用於在用戶空間顯示uevent中的環境變量,uevent_store()函數則用於將uevent屬性寫入到內核空間。

static int device_add_attrs(struct device *dev)
{
    struct class *class = dev->class;
    const struct device_type *type = dev->type;
    int error;

    if (class) {
        error = device_add_groups(dev, class->dev_groups);
        if (error)
            return error;
    }

    if (type) {
        error = device_add_groups(dev, type->groups);
        if (error)
            goto err_remove_class_groups;
    }

    error = device_add_groups(dev, dev->groups);
    if (error)
        goto err_remove_type_groups;

    if (device_supports_offline(dev) && !dev->offline_disabled) {
        error = device_create_file(dev, &dev_attr_online);
        if (error)
            goto err_remove_dev_groups;
    }

    return 0;

 err_remove_dev_groups:
    device_remove_groups(dev, dev->groups);
 err_remove_type_groups:
    if (type)
        device_remove_groups(dev, type->groups);
 err_remove_class_groups:
    if (class)
        device_remove_groups(dev, class->dev_groups);

    return error;
}

static void device_remove_attrs(struct device *dev)
{
    struct class *class = dev->class;
    const struct device_type *type = dev->type;

    device_remove_file(dev, &dev_attr_online);
    device_remove_groups(dev, dev->groups);

    if (type)
        device_remove_groups(dev, type->groups);

    if (class)
        device_remove_groups(dev, class->dev_groups);
}

device_add_attrs()負責device中的屬性添加,包括幾個部分的集合,分別是class中groups、device_type中的groups還有device本身的groups,device_remove_attrs()則是相反的操作,負責刪除device的屬性。

static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
            char *buf)
{
    return print_dev_t(buf, dev->devt);
}
static DEVICE_ATTR_RO(dev);

這里定義了一個名為dev的屬性文件,其權限為擁有者只能讀,函數實現的功能為顯示設備的設備號。

/**
 * device_create_file - create sysfs attribute file for device.
 * @dev: device.
 * @attr: device attribute descriptor.
 */
int device_create_file(struct device *dev,
               const struct device_attribute *attr)
{
    int error = 0;

    if (dev) {
        WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
            "Attribute %s: write permission without 'store'\n",
            attr->attr.name);
        WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
            "Attribute %s: read permission without 'show'\n",
            attr->attr.name);
        error = sysfs_create_file(&dev->kobj, &attr->attr);
    }

    return error;
}

/**
 * device_remove_file - remove sysfs attribute file.
 * @dev: device.
 * @attr: device attribute descriptor.
 */
void device_remove_file(struct device *dev,
            const struct device_attribute *attr)
{
    if (dev)
        sysfs_remove_file(&dev->kobj, &attr->attr);
}


/**
 * device_create_bin_file - create sysfs binary attribute file for device.
 * @dev: device.
 * @attr: device binary attribute descriptor.
 */
int device_create_bin_file(struct device *dev,
               const struct bin_attribute *attr)
{
    int error = -EINVAL;
    if (dev)
        error = sysfs_create_bin_file(&dev->kobj, attr);
    return error;
}

/**
 * device_remove_bin_file - remove sysfs binary attribute file
 * @dev: device.
 * @attr: device binary attribute descriptor.
 */
void device_remove_bin_file(struct device *dev,
                const struct bin_attribute *attr)
{
    if (dev)
        sysfs_remove_bin_file(&dev->kobj, attr);
}

上面這些函數是對sysfs提供的API進行簡單的封裝,其中device_create_file()和device_remove_file()提供直接的設備屬性文件管理方法,device_create_bin_file()和device_remove_bin_file()則是提供設備管理二進制文件的方法。

static void klist_children_get(struct klist_node *n)
{
    struct device_private *p = to_device_private_parent(n);
    struct device *dev = p->device;

    get_device(dev);
}

static void klist_children_put(struct klist_node *n)
{
    struct device_private *p = to_device_private_parent(n);
    struct device *dev = p->device;

    put_device(dev);
}

klist_children_get()和klist_children_put()函數是當設備掛入和刪除父設備的klist_children鏈表時調用的函數,相當於對設備的kobject引用計數的操作。

/**
 * get_device - increment reference count for device.
 * @dev: device.
 *
 * This simply forwards the call to kobject_get(), though
 * we do take care to provide for the case that we get a NULL
 * pointer passed in.
 */
struct device *get_device(struct device *dev)
{
    return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
}

/**
 * put_device - decrement reference count.
 * @dev: device in question.
 */
void put_device(struct device *dev)
{
    /* might_sleep(); */
    if (dev)
        kobject_put(&dev->kobj);
}

get_device()函數和put_device()用於dev的引用計數,通過內嵌的kobject來實現,當引用計數為0時,將會調用前面分析到的device_release()函數。

void device_initialize(struct device *dev)
{
    dev->kobj.kset = devices_kset;
    kobject_init(&dev->kobj, &device_ktype);
    INIT_LIST_HEAD(&dev->dma_pools);
    mutex_init(&dev->mutex);
    lockdep_set_novalidate_class(&dev->mutex);
    spin_lock_init(&dev->devres_lock);
    INIT_LIST_HEAD(&dev->devres_head);
    device_pm_init(dev);
    set_dev_node(dev, -1);
#ifdef CONFIG_GENERIC_MSI_IRQ
    INIT_LIST_HEAD(&dev->msi_list);
#endif
    INIT_LIST_HEAD(&dev->links.consumers);
    INIT_LIST_HEAD(&dev->links.suppliers);
    dev->links.status = DL_DEV_NO_DRIVER;
}

device_initialize()函數是設備在sysfs中注冊的第一個階段,用於將struct device結構體進行初始化,主要是對結構體內的一些成員進行初始化,結構體內嵌的kobject下的kset配置為devices_kset,調用kobject_init()函數設置device_ktype和sysfs_ops結構中的兩個函數和device_release()函數,另外還有一些特定資源需要的成員的初始化。

static struct kobject *get_device_parent(struct device *dev,
                     struct device *parent)
{
    if (dev->class) {
        struct kobject *kobj = NULL;
        struct kobject *parent_kobj;
        struct kobject *k;

#ifdef CONFIG_BLOCK
        /* block disks show up in /sys/block */
        if (sysfs_deprecated && dev->class == &block_class) {
            if (parent && parent->class == &block_class)
                return &parent->kobj;
            return &block_class.p->subsys.kobj;
        }
#endif

        /*
         * If we have no parent, we live in "virtual".
         * Class-devices with a non class-device as parent, live
         * in a "glue" directory to prevent namespace collisions.
         */
        if (parent == NULL)
            parent_kobj = virtual_device_parent(dev);
        else if (parent->class && !dev->class->ns_type)
            return &parent->kobj;
        else
            parent_kobj = &parent->kobj;

        mutex_lock(&gdp_mutex);

        /* find our class-directory at the parent and reference it */
        spin_lock(&dev->class->p->glue_dirs.list_lock);
        list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
            if (k->parent == parent_kobj) {
                kobj = kobject_get(k);
                break;
            }
        spin_unlock(&dev->class->p->glue_dirs.list_lock);
        if (kobj) {
            mutex_unlock(&gdp_mutex);
            return kobj;
        }

        /* or create a new class-directory at the parent device */
        k = class_dir_create_and_add(dev->class, parent_kobj);
        /* do not emit an uevent for this simple "glue" directory */
        mutex_unlock(&gdp_mutex);
        return k;
    }

    /* subsystems can specify a default root directory for their devices */
    if (!parent && dev->bus && dev->bus->dev_root)
        return &dev->bus->dev_root->kobj;

    if (parent)
        return &parent->kobj;
    return NULL;
}

函數get_device_parent()用於獲取父節點的kobject,get_device_parent()的返回值直接決定了device將被掛在哪個目錄下,設備最終掛在的目錄,是由多個因素綜合決定的。

static int device_add_class_symlinks(struct device *dev)
{
    struct device_node *of_node = dev_of_node(dev);
    int error;

    if (of_node) {
        error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
        if (error)
            dev_warn(dev, "Error %d creating of_node link\n",error);
        /* An error here doesn't warrant bringing down the device */
    }

    if (!dev->class)
        return 0;

    error = sysfs_create_link(&dev->kobj,
                  &dev->class->p->subsys.kobj,
                  "subsystem");
    if (error)
        goto out_devnode;

    if (dev->parent && device_is_not_partition(dev)) {
        error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
                      "device");
        if (error)
            goto out_subsys;
    }

#ifdef CONFIG_BLOCK
    /* /sys/block has directories and does not need symlinks */
    if (sysfs_deprecated && dev->class == &block_class)
        return 0;
#endif

    /* link in the class directory pointing to the device */
    error = sysfs_create_link(&dev->class->p->subsys.kobj,
                  &dev->kobj, dev_name(dev));
    if (error)
        goto out_device;

    return 0;

out_device:
    sysfs_remove_link(&dev->kobj, "device");

out_subsys:
    sysfs_remove_link(&dev->kobj, "subsystem");
out_devnode:
    sysfs_remove_link(&dev->kobj, "of_node");
    return error;
}

device_add_class_symlinks()函數用於在device和class直接添加一些軟鏈接,在device目錄下創建指向class的subsystem文件,在class目錄下創建指向device的同名文件,如果device有父設備,而且device不是塊設備分區時,則在device目錄下創建一個指向父設備的device鏈接文件。

static void device_remove_class_symlinks(struct device *dev)
{
    if (dev_of_node(dev))
        sysfs_remove_link(&dev->kobj, "of_node");

    if (!dev->class)
        return;

    if (dev->parent && device_is_not_partition(dev))
        sysfs_remove_link(&dev->kobj, "device");
    sysfs_remove_link(&dev->kobj, "subsystem");
#ifdef CONFIG_BLOCK
    if (sysfs_deprecated && dev->class == &block_class)
        return;
#endif
    sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
}

device_remove_class_symlinks()函數則是相反操作,用於刪除device和class之間建立的軟鏈接。

/**
 * dev_set_name - set a device name
 * @dev: device
 * @fmt: format string for the device's name
 */
int dev_set_name(struct device *dev, const char *fmt, ...)
{
    va_list vargs;
    int err;

    va_start(vargs, fmt);
    err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
    va_end(vargs);
    return err;
}

dev_set_name()函數用於設置device的名稱,該函數只能在設備未注冊之前使用,名稱是通過dev->kobject進行管理的。

static struct kobject *device_to_dev_kobj(struct device *dev)
{
    struct kobject *kobj;

    if (dev->class)
        kobj = dev->class->dev_kobj;
    else
        kobj = sysfs_dev_char_kobj;

    return kobj;
}

該函數用於為device選擇合適的/sys/dev下的kobject或者字符設備或者NULL。

#define format_dev_t(buffer, dev)                    \
    ({                                \
        sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev));    \
        buffer;                            \
    })

static int device_create_sys_dev_entry(struct device *dev)
{
    struct kobject *kobj = device_to_dev_kobj(dev);
    int error = 0;
    char devt_str[15];

    if (kobj) {
        format_dev_t(devt_str, dev->devt);
        error = sysfs_create_link(kobj, &dev->kobj, devt_str);
    }

    return error;
}

static void device_remove_sys_dev_entry(struct device *dev)
{
    struct kobject *kobj = device_to_dev_kobj(dev);
    char devt_str[15];

    if (kobj) {
        format_dev_t(devt_str, dev->devt);
        sysfs_remove_link(kobj, devt_str);
    }
}

device_create_sys_dev_entry()函數實現的功能是在/sys/dev相應的目錄下創建相應設備的軟鏈接,首先通過調用device_to_dev_kobj()函數獲得父節點的kobj,然后調用sysfs_create_link()函數建立軟鏈接,device_remove_sys_dev_entry()函數則是執行相反的操作,用於刪除已經在/sys/dev下建立的軟鏈接。

int device_private_init(struct device *dev)
{
    dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
    if (!dev->p)
        return -ENOMEM;
    dev->p->device = dev;
    klist_init(&dev->p->klist_children, klist_children_get,
           klist_children_put);
    INIT_LIST_HEAD(&dev->p->deferred_probe);
    return 0;
}

函數device_private_init()為dev->p分配內存空間並進行初始化,該內存的空間釋放是在調用device_release()函數釋放設備時才會釋放。

上面提到到的函數都是比較零散的函數,看起來並沒有什么聯系,接下來繼續分析一下提供給外界的接口函數實現:

/**
 * device_register - register a device with the system.
 * @dev: pointer to the device structure
 *
 * This happens in two clean steps - initialize the device
 * and add it to the system. The two steps can be called
 * separately, but this is the easiest and most common.
 * I.e. you should only call the two helpers separately if
 * have a clearly defined need to use and refcount the device
 * before it is added to the hierarchy.
 *
 * For more information, see the kerneldoc for device_initialize()
 * and device_add().
 *
 * NOTE: _Never_ directly free @dev after calling this function, even
 * if it returned an error! Always use put_device() to give up the
 * reference initialized in this function instead.
 */
int device_register(struct device *dev)
{
    device_initialize(dev);
    return device_add(dev);
}

首先是device_register()函數,該函數是提供給外界注冊設備的接口,該函數首先調用device_initialize()函數進行結構體的變量初始化,然后調用device_add()函數將device添加到系統中,但是需要注意的是,在調用device_register()注冊device之前,有一些device結構體變量需要自己設置,其中有指明設備位置的struct device *parent、struct bus_type *bus、struct class *class等,有指明設備屬性的const char *init_name、struct device_type *type、const struct attribute_group **groups、dev_t devt和release()函數等,不同的設備使用的方法不同。

接下來分析device_add()函數的實現:

/**
 * device_add - add device to device hierarchy.
 * @dev: device.
 *
 * This is part 2 of device_register(), though may be called
 * separately _iff_ device_initialize() has been called separately.
 *
 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
 * to the global and sibling lists for the device, then
 * adds it to the other relevant subsystems of the driver model.
 *
 * Do not call this routine or device_register() more than once for
 * any device structure.  The driver model core is not designed to work
 * with devices that get unregistered and then spring back to life.
 * (Among other things, it's very hard to guarantee that all references
 * to the previous incarnation of @dev have been dropped.)  Allocate
 * and register a fresh new struct device instead.
 *
 * NOTE: _Never_ directly free @dev after calling this function, even
 * if it returned an error! Always use put_device() to give up your
 * reference instead.
 */
int device_add(struct device *dev)
{
    struct device *parent;
    struct kobject *kobj;
    struct class_interface *class_intf;
    int error = -EINVAL;
    struct kobject *glue_dir = NULL;

    dev = get_device(dev);    //增加device的引用計數
    if (!dev)
        goto done;

    if (!dev->p) {
        error = device_private_init(dev);    //分配和初始化dev->p
        if (error)
            goto done;
    }

    /*
     * for statically allocated devices, which should all be converted
     * some day, we need to initialize the name. We prevent reading back
     * the name, and force the use of dev_name()
     */
    if (dev->init_name) {
        dev_set_name(dev, "%s", dev->init_name);    //設置設備的名稱
        dev->init_name = NULL;
    }

    /* subsystems can specify simple device enumeration */
    if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
        dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);

    if (!dev_name(dev)) {
        error = -EINVAL;
        goto name_error;
    }

    pr_debug("device: '%s': %s\n", dev_name(dev), __func__);

    parent = get_device(dev->parent);    //增加對parent的引用計數,無parent時返回NULL
    kobj = get_device_parent(dev, parent);    //獲取父kobject
    if (IS_ERR(kobj)) {
        error = PTR_ERR(kobj);
        goto parent_error;
    }
    if (kobj)
        dev->kobj.parent = kobj;    //設置dev->kobj的父kobject

    /* use parent numa_node */
    if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
        set_dev_node(dev, dev_to_node(parent));

    /* first, register with generic layer. */
    /* we require the name to be set before, and pass NULL */
    error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);    //將device內嵌的kobj加入到kobject層次結構中
    if (error) {
        glue_dir = get_glue_dir(dev);
        goto Error;
    }

    /* notify platform of device entry */
    if (platform_notify)
        platform_notify(dev);

    error = device_create_file(dev, &dev_attr_uevent);    //添加uevent屬性文件
    if (error)
        goto attrError;

    error = device_add_class_symlinks(dev);    //dev與class軟鏈接創建
    if (error)
        goto SymlinkError;
    error = device_add_attrs(dev);    //添加屬性
    if (error)
        goto AttrsError;
    error = bus_add_device(dev);    //將設備添加到總線上,創建dev與bus間的軟鏈接
    if (error)
        goto BusError;
    error = dpm_sysfs_add(dev);        //增加dev下的power屬性集合
    if (error)
        goto DPMError;
    device_pm_add(dev);

    if (MAJOR(dev->devt)) {        //主設備號存在
        error = device_create_file(dev, &dev_attr_dev);    //添加dev屬性
        if (error)
            goto DevAttrError;

        error = device_create_sys_dev_entry(dev);    //在/sys/dev下添加相應的軟鏈接
        if (error)
            goto SysEntryError;

        devtmpfs_create_node(dev);    //在/dev下添加相應的設備節點
    }

    /* Notify clients of device addition.  This call must come
     * after dpm_sysfs_add() and before kobject_uevent().
     */
    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                         BUS_NOTIFY_ADD_DEVICE, dev);

    kobject_uevent(&dev->kobj, KOBJ_ADD);    //kobject發布KOBJ_ADD消息到用戶空間
    bus_probe_device(dev);        //為device尋找合適的驅動
    if (parent)
        klist_add_tail(&dev->p->knode_parent,
                   &parent->p->klist_children);    //如果父節點存在,將掛入到klist_children鏈表

    if (dev->class) {    //如果device所屬的class存在
        mutex_lock(&dev->class->p->mutex);
        /* tie the class to the device */
        klist_add_tail(&dev->knode_class,
                   &dev->class->p->klist_devices);    //節點插入鏈表

        /* notify any interfaces that the device is here */
        list_for_each_entry(class_intf,
                    &dev->class->p->interfaces, node)
            if (class_intf->add_dev)
                class_intf->add_dev(dev, class_intf);
        mutex_unlock(&dev->class->p->mutex);
    }
done:
    put_device(dev);    //減少device的引用計數
    return error;
 SysEntryError:
    if (MAJOR(dev->devt))
        device_remove_file(dev, &dev_attr_dev);
 DevAttrError:
    device_pm_remove(dev);
    dpm_sysfs_remove(dev);
 DPMError:
    bus_remove_device(dev);
 BusError:
    device_remove_attrs(dev);
 AttrsError:
    device_remove_class_symlinks(dev);
 SymlinkError:
    device_remove_file(dev, &dev_attr_uevent);
 attrError:
    kobject_uevent(&dev->kobj, KOBJ_REMOVE);
    glue_dir = get_glue_dir(dev);
    kobject_del(&dev->kobj);
 Error:
    cleanup_glue_dir(dev, glue_dir);
parent_error:
    put_device(parent);
name_error:
    kfree(dev->p);
    dev->p = NULL;
    goto done;
}

函數device_add()用於將dev添加到設備驅動模型中去,它先調用get_device()來增加dev的引用計數,然后調用device_private_init()進行dev->p的分配和初始化,調用dev_set_name()對dev的名字進行設置,接下來,要做的是准備將dev添加到sysfs設備文件系統中去,首先是調用get_device()增加對paren的引用計數(無論是直接掛在parent下還是通過一個類層掛在parent下都要增加parent的引用計數),然后調用get_device_parent()找到實際要加入的父kobject,並調用kobject_add()將dev->kobj加入到dev->kobj.parent的層次結構中去,接下來是完成屬性和屬性集合的添加,調用device_create_file()添加uevent屬性文件,然后調用device_add_class_symlinks()在dev下創建一個軟鏈接subsystem,指向相對應的class,然后繼續調用device_add_attrs()添加屬性和屬性集合,調用bus_add_device()添加設備的總線屬性,在dev與bus之間創建軟鏈接,並將dev掛入到總線的設備鏈表中去,dpm_sysfs_add()用於增加dev下的power屬性集合,調用device_pm_add()將設備添加到dpm_list鏈表中去。如果設備被分配了主設備號,調用device_create_file()添加dev屬性文件,然后調用device_create_sys_dev_entry()在/sys/dev下創建相應的軟鏈接,調用devtmpfs_create_node()在/dev下添加對應的設備節點文件。函數開始調用kobject_uevent()向用戶空間發布KOBJ_ADD消息通知,並調用bus_probe_device()為設備探測尋找合適的驅動程序,如果設備有父節點的話,則把dev->p->knode_parent掛入到parent->p->klist_children鏈表中,如果設備有所屬的class,則將dev->knode_class掛入class->p>class_devices上,並調用可能的類設備接口add_dev()函數,對於直接在bus上的設備來講,可以調用bus_probe_device()來查找驅動程序,但是不與bus直接接觸的設備,則靠class來去尋找驅動,便使用了class_interface內的add_dev()方式,函數最后調用put_device()減少在開頭增加的引用計數並返回。

/**
 * device_unregister - unregister device from system.
 * @dev: device going away.
 *
 * We do this in two parts, like we do device_register(). First,
 * we remove it from all the subsystems with device_del(), then
 * we decrement the reference count via put_device(). If that
 * is the final reference count, the device will be cleaned up
 * via device_release() above. Otherwise, the structure will
 * stick around until the final reference to the device is dropped.
 */
void device_unregister(struct device *dev)
{
    pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
    device_del(dev);
    put_device(dev);
}

有設備注冊函數,肯定也有設備注銷函數,device_unregister()函數實現的功能為將dev從系統中注銷,並減少創建時產生的引用計數,當引用計數為0時,將銷毀dev。

/**
 * device_del - delete device from system.
 * @dev: device.
 *
 * This is the first part of the device unregistration
 * sequence. This removes the device from the lists we control
 * from here, has it removed from the other driver model
 * subsystems it was added to in device_add(), and removes it
 * from the kobject hierarchy.
 *
 * NOTE: this should be called manually _iff_ device_add() was
 * also called manually.
 */
void device_del(struct device *dev)
{
    struct device *parent = dev->parent;
    struct kobject *glue_dir = NULL;
    struct class_interface *class_intf;

    /* Notify clients of device removal.  This call must come
     * before dpm_sysfs_remove().
     */
    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                         BUS_NOTIFY_DEL_DEVICE, dev);

    dpm_sysfs_remove(dev);    //將sysfs下的power屬性集合移除
    if (parent)            //如果存在父節點
        klist_del(&dev->p->knode_parent);    //將設備節點從父節點鏈表中移除
    if (MAJOR(dev->devt)) {            //如果分配了主設備號
        devtmpfs_delete_node(dev);        //將/dev下的設備節點文件移除
        device_remove_sys_dev_entry(dev);    ///sys/dev下的軟鏈接取消
        device_remove_file(dev, &dev_attr_dev);    //將屬性文件移除
    }
    if (dev->class) {
        device_remove_class_symlinks(dev);

        mutex_lock(&dev->class->p->mutex);
        /* notify any interfaces that the device is now gone */
        list_for_each_entry(class_intf,
                    &dev->class->p->interfaces, node)
            if (class_intf->remove_dev)
                class_intf->remove_dev(dev, class_intf);
        /* remove the device from the class list */
        klist_del(&dev->knode_class);
        mutex_unlock(&dev->class->p->mutex);
    }
    device_remove_file(dev, &dev_attr_uevent);    //移除uevent屬性文件
    device_remove_attrs(dev);    //屬性及屬性集合移除
    bus_remove_device(dev);        //總線上移除設備
    device_pm_remove(dev);        //將dev從dpm_list中移除
    driver_deferred_probe_del(dev);        //驅動移除
    device_remove_properties(dev);
    device_links_purge(dev);

    /* Notify the platform of the removal, in case they
     * need to do anything...
     */
    if (platform_notify_remove)
        platform_notify_remove(dev);
    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                         BUS_NOTIFY_REMOVED_DEVICE, dev);
    kobject_uevent(&dev->kobj, KOBJ_REMOVE);    //kobject發布KOBJ_REMOVE消息到用戶空間
    glue_dir = get_glue_dir(dev);
    kobject_del(&dev->kobj);    //將內嵌的kobj從層次結構中移除
    cleanup_glue_dir(dev, glue_dir);
    put_device(parent);        //父節點引用計數減1操作
}

函數device_del()是與device_add()相對的函數,device_add()將設備添加到系統中,device_del()則是將設備從系統中移除,包括了將dev從設備驅動模型的各種klist鏈表中進行脫離,又將dev從sysfs的各個地方創建的文件進行刪除的工作。

static struct device *prev_device(struct klist_iter *i)    //返回前一個設備
{
    struct klist_node *n = klist_prev(i);
    struct device *dev = NULL;
    struct device_private *p;

    if (n) {
        p = to_device_private_parent(n);//返回device_private結構體的首地址
        dev = p->device;//將struct device結構體地址返回
    }
    return dev;
}

static struct device *next_device(struct klist_iter *i)
{
    struct klist_node *n = klist_next(i);
    struct device *dev = NULL;
    struct device_private *p;

    if (n) {
        p = to_device_private_parent(n);
        dev = p->device;
    }
    return dev;
}

內部函數prev_device()和next_device()用於device的klist的鏈表遍歷,prev_device()將返回前一個設備,next_device()將返回下一個設備。

/**
 * device_get_devnode - path of device node file
 * @dev: device
 * @mode: returned file access mode
 * @uid: returned file owner
 * @gid: returned file group
 * @tmp: possibly allocated string
 *
 * Return the relative path of a possible device node.
 * Non-default names may need to allocate a memory to compose
 * a name. This memory is returned in tmp and needs to be
 * freed by the caller.
 */
const char *device_get_devnode(struct device *dev,
                   umode_t *mode, kuid_t *uid, kgid_t *gid,
                   const char **tmp)
{
    char *s;

    *tmp = NULL;

    /* the device type may provide a specific name */
    if (dev->type && dev->type->devnode)
        *tmp = dev->type->devnode(dev, mode, uid, gid);
    if (*tmp)
        return *tmp;

    /* the class may provide a specific name */
    if (dev->class && dev->class->devnode)
        *tmp = dev->class->devnode(dev, mode);
    if (*tmp)
        return *tmp;

    /* return name without allocation, tmp == NULL */
    if (strchr(dev_name(dev), '!') == NULL)
        return dev_name(dev);

    /* replace '!' in the name with '/' */
    s = kstrdup(dev_name(dev), GFP_KERNEL);
    if (!s)
        return NULL;
    strreplace(s, '!', '/');
    return *tmp = s;
}

函數device_get_devnode()用於返回設備的路徑名。

/**
 * device_for_each_child - device child iterator.
 * @parent: parent struct device.
 * @fn: function to be called for each device.
 * @data: data for the callback.
 *
 * Iterate over @parent's child devices, and call @fn for each,
 * passing it @data.
 *
 * We check the return of @fn each time. If it returns anything
 * other than 0, we break out and return that value.
 */
int device_for_each_child(struct device *parent, void *data,
              int (*fn)(struct device *dev, void *data))
{
    struct klist_iter i;
    struct device *child;
    int error = 0;

    if (!parent->p)
        return 0;

    klist_iter_init(&parent->p->klist_children, &i);//迭代器初始化,從鏈表頭開始
    while ((child = next_device(&i)) && !error)    //正序遍歷klist_children鏈表
        error = fn(child, data);
    klist_iter_exit(&i);
    return error;
}

int device_for_each_child_reverse(struct device *parent, void *data,
                  int (*fn)(struct device *dev, void *data))
{
    struct klist_iter i;
    struct device *child;
    int error = 0;

    if (!parent->p)
        return 0;

    klist_iter_init(&parent->p->klist_children, &i);
    while ((child = prev_device(&i)) && !error)    //逆序遍歷klist_children鏈表
        error = fn(child, data);
    klist_iter_exit(&i);
    return error;
}

struct device *device_find_child(struct device *parent, void *data,
                 int (*match)(struct device *dev, void *data))
{
    struct klist_iter i;
    struct device *child;

    if (!parent)
        return NULL;

    klist_iter_init(&parent->p->klist_children, &i);
    while ((child = next_device(&i)))
        if (match(child, data) && get_device(child))
            break;
    klist_iter_exit(&i);
    return child;
}

在上面的函數都是對設備鏈表的遍歷,device_for_each_child()函數和device_for_each_child_reverse()函數對父設備下的子設備進行遍歷,並都調用一個特定的函數fn()進行處理,device_find_child()函數則是查找特定的子設備,查找使用特定match()函數進行匹配。

接下來,繼續分析動態創建struct device的方法,其原理和kobject和kset的動態創建類似:

static void device_create_release(struct device *dev)
{
    pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
    kfree(dev);
}

static struct device *
device_create_groups_vargs(struct class *class, struct device *parent,
               dev_t devt, void *drvdata,
               const struct attribute_group **groups,
               const char *fmt, va_list args)
{
    struct device *dev = NULL;
    int retval = -ENODEV;

    if (class == NULL || IS_ERR(class))//判斷class指針是否有效
        goto error;

    dev = kzalloc(sizeof(*dev), GFP_KERNEL);//為dev動態分配內存
    if (!dev) {
        retval = -ENOMEM;
        goto error;
    }

    device_initialize(dev);//設備初始化
    dev->devt = devt;
    dev->class = class;
    dev->parent = parent;
    dev->groups = groups;
    dev->release = device_create_release;
    dev_set_drvdata(dev, drvdata);

    retval = kobject_set_name_vargs(&dev->kobj, fmt, args);//設置kobject的name
    if (retval)
        goto error;

    retval = device_add(dev);//將設備添加到sysfs層次系統
    if (retval)
        goto error;

    return dev;

error:
    put_device(dev);
    return ERR_PTR(retval);//將異常指針返回
}

/**
 * device_create_vargs - creates a device and registers it with sysfs
 * @class: pointer to the struct class that this device should be registered to
 * @parent: pointer to the parent struct device of this new device, if any
 * @devt: the dev_t for the char device to be added
 * @drvdata: the data to be added to the device for callbacks
 * @fmt: string for the device's name
 * @args: va_list for the device's name
 *
 * This function can be used by char device classes.  A struct device
 * will be created in sysfs, registered to the specified class.
 *
 * A "dev" file will be created, showing the dev_t for the device, if
 * the dev_t is not 0,0.
 * If a pointer to a parent struct device is passed in, the newly created
 * struct device will be a child of that device in sysfs.
 * The pointer to the struct device will be returned from the call.
 * Any further sysfs files that might be required can be created using this
 * pointer.
 *
 * Returns &struct device pointer on success, or ERR_PTR() on error.
 *
 * Note: the struct class passed to this function must have previously
 * been created with a call to class_create().
 */
struct device *device_create_vargs(struct class *class, struct device *parent,
                   dev_t devt, void *drvdata, const char *fmt,
                   va_list args)
{
    return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
                      fmt, args);
}

struct device *device_create(struct class *class, struct device *parent,
                 dev_t devt, void *drvdata, const char *fmt, ...)
{
    va_list vargs;
    struct device *dev;

    va_start(vargs, fmt);
    dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
    va_end(vargs);
    return dev;
}

struct device *device_create_with_groups(struct class *class,
                     struct device *parent, dev_t devt,
                     void *drvdata,
                     const struct attribute_group **groups,
                     const char *fmt, ...)
{
    va_list vargs;
    struct device *dev;

    va_start(vargs, fmt);
    dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
                     fmt, vargs);
    va_end(vargs);
    return dev;
}

在上面代碼中,device_create_release()和device_create_groups_vargs()屬於兩個內部的靜態函數,第一個函數用於釋放device分配的內核空間,由於dev是動態分配的,而第二個函數則是用來動態創建一個device,函數首先對傳入的class進行判斷,然后對device進行內存分配,分配成功后就是開始調用device_initialize()對設備初始化,並手動對device的一些成員進行賦值,然后調用kobject_set_name_vargs()對device中嵌入的kobject進行名稱設置,最后,則是調用device_add()函數將動態創建的device添加到sysfs層次系統,而device_create_vargs()、device_create()和device_create_with_groups()都是對device_create_groups_vargs()的進一步封裝,device_create()和device_create_with_groups()的區別在於創建的時候是否要創建device的組屬性文件。

static int __match_devt(struct device *dev, const void *data)
{
    const dev_t *devt = data;

    return dev->devt == *devt;//設備號匹配
}

/**
 * device_destroy - removes a device that was created with device_create()
 * @class: pointer to the struct class that this device was registered with
 * @devt: the dev_t of the device that was previously registered
 *
 * This call unregisters and cleans up a device that was created with a
 * call to device_create().
 */
void device_destroy(struct class *class, dev_t devt)
{
    struct device *dev;

    dev = class_find_device(class, NULL, &devt, __match_devt);//在class下尋找設備
    if (dev) {
        put_device(dev);//減少引用計數
        device_unregister(dev);//注銷設備
    }
}

device_create()用於動態創建一個設備,而device_destroy()函數則用來銷毀一個device_create()創建出來的設備,__match_devt()屬於內部的靜態函數,用於class_find_device()函數尋找需要銷毀的device,主要是通過設備號進行匹配而尋找,之所以需要使用put_device()減少引用計數,是因為使用class_find_device()中調用了get_device()增加了引用計數。

int device_rename(struct device *dev, const char *new_name)
{
    struct kobject *kobj = &dev->kobj;
    char *old_device_name = NULL;
    int error;

    dev = get_device(dev);
    if (!dev)
        return -EINVAL;

    dev_dbg(dev, "renaming to %s\n", new_name);

    old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
    if (!old_device_name) {
        error = -ENOMEM;
        goto out;
    }

    if (dev->class) {
        error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
                         kobj, old_device_name,
                         new_name, kobject_namespace(kobj));
        if (error)
            goto out;
    }

    error = kobject_rename(kobj, new_name);
    if (error)
        goto out;

out:
    put_device(dev);

    kfree(old_device_name);

    return error;
}

函數device_rename()是當設備在sysfs中注冊后,用來改變設備的名稱用的,首先改變/sys/class目錄下的軟鏈接的名稱,然后使用kobject_rename()將device下嵌入的kobject進行重新命名。

/**
 * device_shutdown - call ->shutdown() on each device to shutdown.
 */
void device_shutdown(void)
{
    struct device *dev, *parent;

    spin_lock(&devices_kset->list_lock);
    /*
     * Walk the devices list backward, shutting down each in turn.
     * Beware that device unplug events may also start pulling
     * devices offline, even as the system is shutting down.
     */
    while (!list_empty(&devices_kset->list)) {
        dev = list_entry(devices_kset->list.prev, struct device,
                kobj.entry);

        /*
         * hold reference count of device's parent to
         * prevent it from being freed because parent's
         * lock is to be held
         */
        parent = get_device(dev->parent);
        get_device(dev);
        /*
         * Make sure the device is off the kset list, in the
         * event that dev->*->shutdown() doesn't remove it.
         */
        list_del_init(&dev->kobj.entry);
        spin_unlock(&devices_kset->list_lock);

        /* hold lock to avoid race with probe/release */
        if (parent)
            device_lock(parent);
        device_lock(dev);

        /* Don't allow any more runtime suspends */
        pm_runtime_get_noresume(dev);
        pm_runtime_barrier(dev);

        if (dev->class && dev->class->shutdown_pre) {
            if (initcall_debug)
                dev_info(dev, "shutdown_pre\n");
            dev->class->shutdown_pre(dev);
        }
        if (dev->bus && dev->bus->shutdown) {
            if (initcall_debug)
                dev_info(dev, "shutdown\n");
            dev->bus->shutdown(dev);
        } else if (dev->driver && dev->driver->shutdown) {
            if (initcall_debug)
                dev_info(dev, "shutdown\n");
            dev->driver->shutdown(dev);
        }

        device_unlock(dev);
        if (parent)
            device_unlock(parent);

        put_device(dev);
        put_device(parent);

        spin_lock(&devices_kset->list_lock);
    }
    spin_unlock(&devices_kset->list_lock);
}

函數device_shutdown()用來關閉sysfs上的每個設備,它在系統關閉時才會進行調用,在函數內,使用了devices_kset這個頂層kset,所在的目錄為/sys/devices,因此,函數調用會遍歷到注冊的到sysfs上的每個設備,調用設備相應的總線或驅動定義的shutdown()函數,每個設備雖然可以有不同的parent,但是kset還是一樣的,當在調用kobject_add()函數時,將devices_kset這個kset->kobj設置成parent,那么新添加的kobject就會掛在/sys/devices頂層目錄下,例如virtual目錄等。

 

4、小結

在內核中,struct device結構體的實現非常地復雜,它是Linux內核設備驅動模型的基礎,為了適應越來越復雜的情景,以及提高設備的驅動性能,其實現將會越來越復雜,對其分析點到為止。

 

參考:

《LINUX設備驅動程序(第三版)》

https://blog.csdn.net/qb_2008/article/details/6847133

https://blog.csdn.net/abo8888882006/article/details/5424363


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM