Linux內核kobject結構體分析


1、前言

Linux內核中有大量的驅動,而這些驅動往往具有類似的結構,根據面向對象的思想,可以將共同的部分提取為父類,而這個父類就是kobject,kobject結構體中包含了大量設備的必須信息,而三大類設備驅動都需要包含這個kobject結構,運用面向對象的思想來看問題,也就是繼承來自kobject,一個kobject對象往往就對應sysfs中的一個目錄,kobject是組成設備模型的基本結構,kobject需要處理的基本任務有如下:

(1)對象的引用計數

當一個內核對象被創建時,不可能知道對象的存活時間,跟蹤該對象的的生命周期的一個方法就是使用引用計數,當內核中沒有代碼持有該對象的引用時,說明該對象可以被銷毀了;

(2)sysfs表述

一個kobject對象往往對應sysfs中的一個目錄,kobject被用來與內核交互並創建它的sysfs可見表述;

(3)數據結構關聯

從整體上看,設備模型是一個友好而復雜的數據結構,通過kobject對象實現了大量的連接而構成了一個多層次的體系結構;

(4)熱拔插事件處理

當系統中的硬件被熱插拔時,在kobject子系統的控制下,將產生事件以通知用戶空間。 

 

2、kobject以及相關結構體

Linux內核源碼中對kobject結構體的定義在include/linux/kobject.h文件中,實現在lib/kobjet.c,struct kobject結構體的定義如下所示:

struct kobject {
    const char        *name;
    struct list_head    entry;
    struct kobject        *parent;
    struct kset        *kset;
    struct kobj_type    *ktype;
    struct kernfs_node    *sd; /* sysfs directory entry */
    struct kref        kref;
#ifdef CONFIG_DEBUG_KOBJECT_RELEASE
    struct delayed_work    release;
#endif
    unsigned int state_initialized:1;
    unsigned int state_in_sysfs:1;
    unsigned int state_add_uevent_sent:1;
    unsigned int state_remove_uevent_sent:1;
    unsigned int uevent_suppress:1;
};

結構體常用成員解釋:

name:表示kobject對象的名字,對應sysfs下的一個目錄;

entry:在kobject中嵌入雙向鏈表list_head結構;

parent:指向當前kobject父對象的指針;

kset:表示當前kobject對象所屬的集合;

ktype:表示當前kobject對象所屬類型;

sd:用於VFS文件系統的目錄項,是設備與文件之間的橋梁,sysfs中的符號鏈接就是通過kernfs_node內的聯合體實現的;

kref:是對kobject的引用計數,當引用計數為0時,就回調之前注冊的release函數釋放該對象;

state_initialized:1:初始化的標志位,在對象被初始化時置位,用於表示對象已被初始化;

state_in_sysfs:1:表示kobject對象在sysfs中的狀態,在對應目錄中被創建則置1,否則為0;

state_add_uevent_sent:1:添加設備的uevent事件是否發送標志,添加設備時會向用戶空間發送uevent事件,請求新增設備;

state_remove_uevent_sent:1:刪除設備的uevent事件是否發送標志,刪除設備時會向用戶空間發送uevent事件,請求卸載設備。

 

struct kobj_type定義了kobject的類型,該結構體既有操作的函數,也有默認的公共屬性,該結構體定義如下:

struct kobj_type {
    void (*release)(struct kobject *kobj);
    const struct sysfs_ops *sysfs_ops;
    struct attribute **default_attrs;
    const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj);
    const void *(*namespace)(struct kobject *kobj);
    void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid);
};

結構體常用成員解釋:

release:函數指針,當引用計數為0時,在kobject釋放時調用;

sysfs_ops:定義了讀寫屬性文件時調用的函數;

default_attrs:定義了這類kobject默認屬性,指向attribute數組的指針。

 

struct sysfs_ops結構體是用於實現屬性的的函數操作集,其定義如下所示:

struct sysfs_ops {
    ssize_t    (*show)(struct kobject *, struct attribute *, char *);
    ssize_t    (*store)(struct kobject *, struct attribute *, const char *, size_t);
};

show:函數用於讀取一個屬性到用戶空間,函數的第一個參數是要讀取的kobject指針,它對應要讀的目錄,第二個參數是要讀的屬性,第三個參數存放讀到的屬性的緩沖區,當函數調用成功后,返回實際讀取的數據長度;

store:函數用於將屬性寫入到內核,函數第一個參數是與寫相關的kobject指針,它對應要寫的目錄,第二個參數是要寫的屬性,第三個參數是要寫入的數據,第四個參數是要寫入的參數長度,這個長度不能超過PAGESIZE個字節大小,只有當擁有屬性寫權限時,才能調用store()函數。

 

struct attribute定義了kobject的屬性,該結構體定義如下:

struct attribute {
    const char        *name;
    umode_t            mode;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
    bool            ignore_lockdep:1;
    struct lock_class_key    *key;
    struct lock_class_key    skey;
#endif
};

常用結構體成員解釋:

name:屬性文件的名稱,屬性文件將在kobject的sysfs目錄中顯示;

mode:屬性文件的讀寫權限。

 

struct kset可以看成是在kobject上的拓展,它包含了一個kobject的鏈表,可以方便地表示sysfs中目錄與子目錄的關系,該結構體定義如下:

/**
 * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem.
 *
 * A kset defines a group of kobjects.  They can be individually
 * different "types" but overall these kobjects all want to be grouped
 * together and operated on in the same manner.  ksets are used to
 * define the attribute callbacks and other common events that happen to
 * a kobject.
 *
 * @list: the list of all kobjects for this kset
 * @list_lock: a lock for iterating over the kobjects
 * @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
 * @uevent_ops: the set of uevent operations for this kset.  These are
 * called whenever a kobject has something happen to it so that the kset
 * can add new environment variables, or filter out the uevents if so
 * desired.
 */
struct kset {
    struct list_head list;
    spinlock_t list_lock;
    struct kobject kobj;
    const struct kset_uevent_ops *uevent_ops;
};

結構體常用成員解釋:

list:用來掛在鏈表上的結構,包含在一個kset的所有kobject構成了一個雙向循壞鏈表,list_head是這個鏈表的頭部,這個鏈表用來連接第一個和最后一個kobject對象,第一個kobject使用entry連接kset集合以及第二個kobject對象,第二個kobject對象使用entry連接第一個kobject對象和第三個kobject對象,最終形成一個kobject對象的鏈表;

list_lock:用於迭代kobjects的鎖;

kobj:歸屬於該kset的所有的kobject的共有parent,這個parent就是體現內核設備組織結構的關鍵,同時,kset的引用計數就是內嵌的kobject對象的引用計數;

uevent_ops:此kset的uevent操作函數集。

 

struct kobj_attribute是kobject在attribute上的拓展,添加了專門讀寫kobject_attribute屬性的函數,結構體定義如下:

struct kobj_attribute {
    struct attribute attr;
    ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,
            char *buf);
    ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr,
             const char *buf, size_t count);
};

結構體成員解釋:

attr:kobject的公共屬性,包括名稱和讀寫權限;

show:函數指針,用於讀取屬性到用戶空間;

store:函數指針,用於用戶空間寫屬性到內核。

注意:無論是kobjec還是kset(說到底是kset內部的kobject),都提供了使用kobj_attribute的快速創建方法。

 

3、kobject實現操作

在Linux內核中提供了一系列kobject的實現方法,接下來,進行簡要分析:

/*
 * populate_dir - populate directory with attributes.
 * @kobj: object we're working on.
 *
 * Most subsystems have a set of default attributes that are associated
 * with an object that registers with them.  This is a helper called during
 * object registration that loops through the default attributes of the
 * subsystem and creates attributes files for them in sysfs.
 */
static int populate_dir(struct kobject *kobj)
{
    struct kobj_type *t = get_ktype(kobj);
    struct attribute *attr;
    int error = 0;
    int i;

    if (t && t->default_attrs) {
        for (i = 0; (attr = t->default_attrs[i]) != NULL; i++) {
            error = sysfs_create_file(kobj, attr);//在sysfs目錄創建屬性文件
            if (error)
                break;
        }
    }
    return error;
}

static int create_dir(struct kobject *kobj)
{
    const struct kobj_ns_type_operations *ops;
    int error;

    error = sysfs_create_dir_ns(kobj, kobject_namespace(kobj));//創建sysfs目錄
    if (error)
        return error;

    error = populate_dir(kobj);//在sysfs目錄中填充屬性文件
    if (error) {
        sysfs_remove_dir(kobj);
        return error;
    }

    /*
     * @kobj->sd may be deleted by an ancestor going away.  Hold an
     * extra reference so that it stays until @kobj is gone.
     */
    sysfs_get(kobj->sd);//引用計數加1

    /*
     * If @kobj has ns_ops, its children need to be filtered based on
     * their namespace tags.  Enable namespace support on @kobj->sd.
     */
    ops = kobj_child_ns_ops(kobj);
    if (ops) {
        BUG_ON(ops->type <= KOBJ_NS_TYPE_NONE);
        BUG_ON(ops->type >= KOBJ_NS_TYPES);
        BUG_ON(!kobj_ns_type_registered(ops->type));

        sysfs_enable_ns(kobj->sd);
    }

    return 0;
}

上面兩個函數中,create_dir()用於在sysfs中創建kobj相應的目錄,populate_dir()創建kobj中默認屬性對應的文件,create_dir()函數就是調用populate_dir()實現的。

static int get_kobj_path_length(struct kobject *kobj)
{
    int length = 1;
    struct kobject *parent = kobj;

    /* walk up the ancestors until we hit the one pointing to the
     * root.
     * Add 1 to strlen for leading '/' of each level.
     */
    do {
        if (kobject_name(parent) == NULL)
            return 0;
        length += strlen(kobject_name(parent)) + 1;
        parent = parent->parent;
    } while (parent);
    return length;
}

static void fill_kobj_path(struct kobject *kobj, char *path, int length)
{
    struct kobject *parent;

    --length;
    for (parent = kobj; parent; parent = parent->parent) {
        int cur = strlen(kobject_name(parent));
        /* back up enough to print this name with '/' */
        length -= cur;
        strncpy(path + length, kobject_name(parent), cur);
        *(path + --length) = '/';
    }

    pr_debug("kobject: '%s' (%p): %s: path = '%s'\n", kobject_name(kobj),
         kobj, __func__, path);
}

/**
 * kobject_get_path - generate and return the path associated with a given kobj and kset pair.
 *
 * @kobj:    kobject in question, with which to build the path
 * @gfp_mask:    the allocation type used to allocate the path
 *
 * The result must be freed by the caller with kfree().
 */
char *kobject_get_path(struct kobject *kobj, gfp_t gfp_mask)
{
    char *path;
    int len;

    len = get_kobj_path_length(kobj);
    if (len == 0)
        return NULL;
    path = kzalloc(len, gfp_mask);
    if (!path)
        return NULL;
    fill_kobj_path(kobj, path, len);

    return path;
}

在上面的三個函數中,前面兩個函數是內部函數,get_kobj_path_length()函數用於獲得kobj路徑名的長度,fill_kobj_path()函數用於將kobj路徑名填充到path緩沖區,然后將指針返回,kobject_get_path()函數就是調用這兩個函數進行實現的。

/* add the kobject to its kset's list */
static void kobj_kset_join(struct kobject *kobj)
{
    if (!kobj->kset)
        return;

    kset_get(kobj->kset);//引用計數加1
    spin_lock(&kobj->kset->list_lock);
    list_add_tail(&kobj->entry, &kobj->kset->list);//在鏈表尾部插入節點
    spin_unlock(&kobj->kset->list_lock);
}

/* remove the kobject from its kset's list */
static void kobj_kset_leave(struct kobject *kobj)
{
    if (!kobj->kset)
        return;

    spin_lock(&kobj->kset->list_lock);
    list_del_init(&kobj->entry);//鏈表刪除節點
    spin_unlock(&kobj->kset->list_lock);
    kset_put(kobj->kset);//引用計數減1
}

上面兩個函數的功能是相對的,kobj_kset_join()用於將kobj加入到kobj->kset的鏈表中,kobj_kset_leave()用於將kobj從kobj->kset的鏈表中刪除。

static void kobject_init_internal(struct kobject *kobj)
{
    if (!kobj)
        return;
    kref_init(&kobj->kref);//引用計數初始化
    INIT_LIST_HEAD(&kobj->entry);//鏈表初始化
    kobj->state_in_sysfs = 0;
    kobj->state_add_uevent_sent = 0;
    kobj->state_remove_uevent_sent = 0;
    kobj->state_initialized = 1;
}

static int kobject_add_internal(struct kobject *kobj)
{
    int error = 0;
    struct kobject *parent;

    if (!kobj)
        return -ENOENT;

    if (!kobj->name || !kobj->name[0]) {
        WARN(1, "kobject: (%p): attempted to be registered with empty "
             "name!\n", kobj);
        return -EINVAL;
    }

    parent = kobject_get(kobj->parent);//父kobject引用計數加1

    /* join kset if set, use it as parent if we do not already have one */
    if (kobj->kset) {
        if (!parent)
            parent = kobject_get(&kobj->kset->kobj);
        kobj_kset_join(kobj);
        kobj->parent = parent;//設置kobject的parent指針
    }

    pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s'\n",
         kobject_name(kobj), kobj, __func__,
         parent ? kobject_name(parent) : "<NULL>",
         kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");

    error = create_dir(kobj);//在sysfs中創建目錄
    if (error) {
        kobj_kset_leave(kobj);
        kobject_put(parent);
        kobj->parent = NULL;

        /* be noisy on error issues */
        if (error == -EEXIST)
            pr_err("%s failed for %s with -EEXIST, don't try to register things with the same name in the same directory.\n",
                   __func__, kobject_name(kobj));
        else
            pr_err("%s failed for %s (error: %d parent: %s)\n",
                   __func__, kobject_name(kobj), error,
                   parent ? kobject_name(parent) : "'none'");
    } else
        kobj->state_in_sysfs = 1;

    return error;
}

kobject_init_internal()函數用來初始化kobj,kobject_add_internal()函數用來將kobj加入已有的結構中去,這兩個函數有密切的聯系,在kobject結構體中有很多變量,但是重要的只有兩個,一個是kset,一個是parent,這兩個變量表示了kobject在整個體系中的位置,決不能自行決定,需要外部參與設置,kobject的創建過程分為init和add兩個階段。kobject_init_internal()把一些結構體變量進行初始化后,等外界設置了parent和kset后,再調用kobject_add_internal()把kobject添加到適當的位置,並創建相應的sysfs目錄及文件。

/**
 * kobject_set_name_vargs - Set the name of an kobject
 * @kobj: struct kobject to set the name of
 * @fmt: format string used to build the name
 * @vargs: vargs to format the string.
 */
int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
                  va_list vargs)
{
    const char *s;

    if (kobj->name && !fmt)
        return 0;

    s = kvasprintf_const(GFP_KERNEL, fmt, vargs);
    if (!s)
        return -ENOMEM;

    /*
     * ewww... some of these buggers have '/' in the name ... If
     * that's the case, we need to make sure we have an actual
     * allocated copy to modify, since kvasprintf_const may have
     * returned something from .rodata.
     */
    if (strchr(s, '/')) {
        char *t;

        t = kstrdup(s, GFP_KERNEL);
        kfree_const(s);
        if (!t)
            return -ENOMEM;
        strreplace(t, '/', '!');
        s = t;
    }
    kfree_const(kobj->name);
    kobj->name = s;

    return 0;
}

/**
 * kobject_set_name - Set the name of a kobject
 * @kobj: struct kobject to set the name of
 * @fmt: format string used to build the name
 *
 * This sets the name of the kobject.  If you have already added the
 * kobject to the system, you must call kobject_rename() in order to
 * change the name of the kobject.
 */
int kobject_set_name(struct kobject *kobj, const char *fmt, ...)
{
    va_list vargs;
    int retval;

    va_start(vargs, fmt);
    retval = kobject_set_name_vargs(kobj, fmt, vargs);
    va_end(vargs);

    return retval;
}

kobject_set_name()函數的作用是設置kobj的名稱,它通過調用kobject_set_name_vargs()來實現,需要注意的時,kobject_set_name()僅限於kobject添加到體系之前使用,因為該函數只是修改了名字,並未通知到用戶空間。

/**
 * kobject_init - initialize a kobject structure
 * @kobj: pointer to the kobject to initialize
 * @ktype: pointer to the ktype for this kobject.
 *
 * This function will properly initialize a kobject such that it can then
 * be passed to the kobject_add() call.
 *
 * After this function is called, the kobject MUST be cleaned up by a call
 * to kobject_put(), not by a call to kfree directly to ensure that all of
 * the memory is cleaned up properly.
 */
void kobject_init(struct kobject *kobj, struct kobj_type *ktype)
{
    char *err_str;

    if (!kobj) {
        err_str = "invalid kobject pointer!";
        goto error;
    }
    if (!ktype) {
        err_str = "must have a ktype to be initialized properly!\n";
        goto error;
    }
    if (kobj->state_initialized) {
        /* do not error out as sometimes we can recover */
        printk(KERN_ERR "kobject (%p): tried to init an initialized "
               "object, something is seriously wrong.\n", kobj);
        dump_stack();
    }

    kobject_init_internal(kobj);
    kobj->ktype = ktype;
    return;

error:
    printk(KERN_ERR "kobject (%p): %s\n", kobj, err_str);
    dump_stack();
}

kobject_init()函數就是調用了kobject_init_internal()函數進行一些結構體變量初始化,然后又設置了ktype結構體成員,ktype的作用是管理一些默認屬性。

static int kobject_add_varg(struct kobject *kobj,
                       struct kobject *parent,
                       const char *fmt, va_list vargs)
{
    int retval;

    retval = kobject_set_name_vargs(kobj, fmt, vargs);
    if (retval) {
        printk(KERN_ERR "kobject: can not set name properly!\n");
        return retval;
    }
    kobj->parent = parent;
    return kobject_add_internal(kobj);
}

/**
 * kobject_add - the main kobject add function
 * @kobj: the kobject to add
 * @parent: pointer to the parent of the kobject.
 * @fmt: format to name the kobject with.
 *
 * The kobject name is set and added to the kobject hierarchy in this
 * function.
 *
 * If @parent is set, then the parent of the @kobj will be set to it.
 * If @parent is NULL, then the parent of the @kobj will be set to the
 * kobject associated with the kset assigned to this kobject.  If no kset
 * is assigned to the kobject, then the kobject will be located in the
 * root of the sysfs tree.
 *
 * If this function returns an error, kobject_put() must be called to
 * properly clean up the memory associated with the object.
 * Under no instance should the kobject that is passed to this function
 * be directly freed with a call to kfree(), that can leak memory.
 *
 * Note, no "add" uevent will be created with this call, the caller should set
 * up all of the necessary sysfs files for the object and then call
 * kobject_uevent() with the UEVENT_ADD parameter to ensure that
 * userspace is properly notified of this kobject's creation.
 */
int kobject_add(struct kobject *kobj, struct kobject *parent,
        const char *fmt, ...)
{
    va_list args;
    int retval;

    if (!kobj)
        return -EINVAL;

    if (!kobj->state_initialized) {
        printk(KERN_ERR "kobject '%s' (%p): tried to add an "
               "uninitialized object, something is seriously wrong.\n",
               kobject_name(kobj), kobj);
        dump_stack();
        return -EINVAL;
    }
    va_start(args, fmt);
    retval = kobject_add_varg(kobj, parent, fmt, args);
    va_end(args);

    return retval;
}

kobject_add()函數用於將kobj添加到體系中去,但是該函數還有一個附加的功能,設置kobj的名字,parent作為參數被傳進來。

/**
 * kobject_init_and_add - initialize a kobject structure and add it to the kobject hierarchy
 * @kobj: pointer to the kobject to initialize
 * @ktype: pointer to the ktype for this kobject.
 * @parent: pointer to the parent of this kobject.
 * @fmt: the name of the kobject.
 *
 * This function combines the call to kobject_init() and
 * kobject_add().  The same type of error handling after a call to
 * kobject_add() and kobject lifetime rules are the same here.
 */
int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
             struct kobject *parent, const char *fmt, ...)
{
    va_list args;
    int retval;

    kobject_init(kobj, ktype);

    va_start(args, fmt);
    retval = kobject_add_varg(kobj, parent, fmt, args);
    va_end(args);

    return retval;
}

kobject_init_and_add()其實是kobjec_init()和kobject_add()的合並,將kobject初始化后並添加到kobject的層次結構中去。

/**
 * kobject_rename - change the name of an object
 * @kobj: object in question.
 * @new_name: object's new name
 *
 * It is the responsibility of the caller to provide mutual
 * exclusion between two different calls of kobject_rename
 * on the same kobject and to ensure that new_name is valid and
 * won't conflict with other kobjects.
 */
int kobject_rename(struct kobject *kobj, const char *new_name)
{
    int error = 0;
    const char *devpath = NULL;
    const char *dup_name = NULL, *name;
    char *devpath_string = NULL;
    char *envp[2];

    kobj = kobject_get(kobj);
    if (!kobj)
        return -EINVAL;
    if (!kobj->parent)
        return -EINVAL;

    devpath = kobject_get_path(kobj, GFP_KERNEL);
    if (!devpath) {
        error = -ENOMEM;
        goto out;
    }
    devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
    if (!devpath_string) {
        error = -ENOMEM;
        goto out;
    }
    sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
    envp[0] = devpath_string;
    envp[1] = NULL;

    name = dup_name = kstrdup_const(new_name, GFP_KERNEL);
    if (!name) {
        error = -ENOMEM;
        goto out;
    }

    error = sysfs_rename_dir_ns(kobj, new_name, kobject_namespace(kobj));
    if (error)
        goto out;

    /* Install the new kobject name */
    dup_name = kobj->name;
    kobj->name = name;

    /* This function is mostly/only used for network interface.
     * Some hotplug package track interfaces by their name and
     * therefore want to know when the name is changed by the user. */
    kobject_uevent_env(kobj, KOBJ_MOVE, envp);

out:
    kfree_const(dup_name);
    kfree(devpath_string);
    kfree(devpath);
    kobject_put(kobj);

    return error;
}

kobject_rename()函數實現的功能為,當kobj已經添加到系統后,可以使用此函數調用實現更改kobject的名字,它除了能完成kobject_set_name()的功能以外,還向用戶空間通知這一消息。

/**
 * kobject_move - move object to another parent
 * @kobj: object in question.
 * @new_parent: object's new parent (can be NULL)
 */
int kobject_move(struct kobject *kobj, struct kobject *new_parent)
{
    int error;
    struct kobject *old_parent;
    const char *devpath = NULL;
    char *devpath_string = NULL;
    char *envp[2];

    kobj = kobject_get(kobj);
    if (!kobj)
        return -EINVAL;
    new_parent = kobject_get(new_parent);
    if (!new_parent) {
        if (kobj->kset)
            new_parent = kobject_get(&kobj->kset->kobj);
    }

    /* old object path */
    devpath = kobject_get_path(kobj, GFP_KERNEL);
    if (!devpath) {
        error = -ENOMEM;
        goto out;
    }
    devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
    if (!devpath_string) {
        error = -ENOMEM;
        goto out;
    }
    sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
    envp[0] = devpath_string;
    envp[1] = NULL;
    error = sysfs_move_dir_ns(kobj, new_parent, kobject_namespace(kobj));
    if (error)
        goto out;
    old_parent = kobj->parent;
    kobj->parent = new_parent;
    new_parent = NULL;
    kobject_put(old_parent);
    kobject_uevent_env(kobj, KOBJ_MOVE, envp);
out:
    kobject_put(new_parent);
    kobject_put(kobj);
    kfree(devpath_string);
    kfree(devpath);
    return error;
}

kobjec_move()函數實現的功能是在kobj添加到系統后,調用此函數能將kobj移動到新的parent下,同時會通知用戶空間。

/**
 * kobject_del - unlink kobject from hierarchy.
 * @kobj: object.
 */
void kobject_del(struct kobject *kobj)
{
    struct kernfs_node *sd;

    if (!kobj)
        return;

    sd = kobj->sd;
    sysfs_remove_dir(kobj);
    sysfs_put(sd);

    kobj->state_in_sysfs = 0;
    kobj_kset_leave(kobj);
    kobject_put(kobj->parent);
    kobj->parent = NULL;
}

kobject_del()函數用於將kobj從系統中刪除,和kobject_add()是相對的操作。

/**
 * kobject_get - increment refcount for object.
 * @kobj: object.
 */
struct kobject *kobject_get(struct kobject *kobj)
{
    if (kobj) {
        if (!kobj->state_initialized)
            WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
                   "initialized, yet kobject_get() is being "
                   "called.\n", kobject_name(kobj), kobj);
        kref_get(&kobj->kref);
    }
    return kobj;
}
/*
 * kobject_cleanup - free kobject resources.
 * @kobj: object to cleanup
 */
static void kobject_cleanup(struct kobject *kobj)
{
    struct kobj_type *t = get_ktype(kobj);
    const char *name = kobj->name;

    pr_debug("kobject: '%s' (%p): %s, parent %p\n",
         kobject_name(kobj), kobj, __func__, kobj->parent);

    if (t && !t->release)
        pr_debug("kobject: '%s' (%p): does not have a release() "
             "function, it is broken and must be fixed.\n",
             kobject_name(kobj), kobj);

    /* send "remove" if the caller did not do it but sent "add" */
    if (kobj->state_add_uevent_sent && !kobj->state_remove_uevent_sent) {
        pr_debug("kobject: '%s' (%p): auto cleanup 'remove' event\n",
             kobject_name(kobj), kobj);
        kobject_uevent(kobj, KOBJ_REMOVE);
    }

    /* remove from sysfs if the caller did not do it */
    if (kobj->state_in_sysfs) {
        pr_debug("kobject: '%s' (%p): auto cleanup kobject_del\n",
             kobject_name(kobj), kobj);
        kobject_del(kobj);
    }

    if (t && t->release) {
        pr_debug("kobject: '%s' (%p): calling ktype release\n",
             kobject_name(kobj), kobj);
        t->release(kobj);
    }

    /* free name if we allocated it */
    if (name) {
        pr_debug("kobject: '%s': free name\n", name);
        kfree_const(name);
    }
}

#ifdef CONFIG_DEBUG_KOBJECT_RELEASE
static void kobject_delayed_cleanup(struct work_struct *work)
{
    kobject_cleanup(container_of(to_delayed_work(work),
                     struct kobject, release));
}
#endif

static void kobject_release(struct kref *kref)
{
    struct kobject *kobj = container_of(kref, struct kobject, kref);
#ifdef CONFIG_DEBUG_KOBJECT_RELEASE
    unsigned long delay = HZ + HZ * (get_random_int() & 0x3);
    pr_info("kobject: '%s' (%p): %s, parent %p (delayed %ld)\n",
         kobject_name(kobj), kobj, __func__, kobj->parent, delay);
    INIT_DELAYED_WORK(&kobj->release, kobject_delayed_cleanup);

    schedule_delayed_work(&kobj->release, delay);
#else
    kobject_cleanup(kobj);
#endif
}

/**
 * kobject_put - decrement refcount for object.
 * @kobj: object.
 *
 * Decrement the refcount, and if 0, call kobject_cleanup().
 */
void kobject_put(struct kobject *kobj)
{
    if (kobj) {
        if (!kobj->state_initialized)
            WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
                   "initialized, yet kobject_put() is being "
                   "called.\n", kobject_name(kobj), kobj);
        kref_put(&kobj->kref, kobject_release);
    }
}

kobject_get()和kobject_put()函數完成的是kobject的引用計數功能,kobject_put()函數在當引用計數為0時,撤銷整個kobject的存在:向用戶空間發送REMOVE信息,從sysfs中刪除相應的目錄,並調用ktype中定義的release函數,並釋放name所占用的空間。kobject_cleanup()函數用來釋放kobject創建時所分配的資源。

 

上述提到到API接口,基本上概括了kobject從創建到刪除,包括kobject的名字修改、位置修改以及引用計數的變動等功能。但是,kobject的創建仍然比較麻煩,因為ktype需要自己去實現,下面是Linux內核中為kobject提供的一種快速創建的方法:

首先是kobject的屬性文件的讀寫函數定義:

/* default kobject attribute operations */
static ssize_t kobj_attr_show(struct kobject *kobj, struct attribute *attr,
                  char *buf)
{
    struct kobj_attribute *kattr;
    ssize_t ret = -EIO;

    kattr = container_of(attr, struct kobj_attribute, attr);
    if (kattr->show)
        ret = kattr->show(kobj, kattr, buf);
    return ret;
}

static ssize_t kobj_attr_store(struct kobject *kobj, struct attribute *attr,
                   const char *buf, size_t count)
{
    struct kobj_attribute *kattr;
    ssize_t ret = -EIO;

    kattr = container_of(attr, struct kobj_attribute, attr);
    if (kattr->store)
        ret = kattr->store(kobj, kattr, buf, count);
    return ret;
}

const struct sysfs_ops kobj_sysfs_ops = {
    .show    = kobj_attr_show,
    .store    = kobj_attr_store,
};

然后是,kobject的釋放函數,以及kobj_type結構體變量的定義,如下:

static void dynamic_kobj_release(struct kobject *kobj)
{
    pr_debug("kobject: (%p): %s\n", kobj, __func__);
    kfree(kobj);
}

static struct kobj_type dynamic_kobj_ktype = {
    .release    = dynamic_kobj_release,
    .sysfs_ops    = &kobj_sysfs_ops,
};

這是Linux內核里面為kobject自身提供的一種kobj_type,名稱叫做dynamic_kobj_type,它並沒有提供默認的屬性,但是提供了release函數和訪問屬性的方法。

/**
 * kobject_create - create a struct kobject dynamically
 *
 * This function creates a kobject structure dynamically and sets it up
 * to be a "dynamic" kobject with a default release function set up.
 *
 * If the kobject was not able to be created, NULL will be returned.
 * The kobject structure returned from here must be cleaned up with a
 * call to kobject_put() and not kfree(), as kobject_init() has
 * already been called on this structure.
 */
struct kobject *kobject_create(void)
{
    struct kobject *kobj;

    kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
    if (!kobj)
        return NULL;

    kobject_init(kobj, &dynamic_kobj_ktype);
    return kobj;
}

/**
 * kobject_create_and_add - create a struct kobject dynamically and register it with sysfs
 *
 * @name: the name for the kobject
 * @parent: the parent kobject of this kobject, if any.
 *
 * This function creates a kobject structure dynamically and registers it
 * with sysfs.  When you are finished with this structure, call
 * kobject_put() and the structure will be dynamically freed when
 * it is no longer being used.
 *
 * If the kobject was not able to be created, NULL will be returned.
 */
struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)
{
    struct kobject *kobj;
    int retval;

    kobj = kobject_create();
    if (!kobj)
        return NULL;

    retval = kobject_add(kobj, parent, "%s", name);
    if (retval) {
        printk(KERN_WARNING "%s: kobject_add error: %d\n",
               __func__, retval);
        kobject_put(kobj);
        kobj = NULL;
    }
    return kobj;
}

在kobject_create()和kobject_create_add()函數中,使用了dynamic_kobj_ktype這個結構體變量,這是一種很好的偷懶方式,因為release()函數會釋放掉kobj,所以這里的kobj必須是動態創建的,這里的kobject_create()和kobject_init()相對,kobject_create_and_add()和kobject_init_and_add()相對。需要注意的是,這里創建的kobject無法嵌入到其它結構,是獨立存在的,所以用到的地方很少。

/**
 * kset_init - initialize a kset for use
 * @k: kset
 */
void kset_init(struct kset *k)
{
    kobject_init_internal(&k->kobj);
    INIT_LIST_HEAD(&k->list);
    spin_lock_init(&k->list_lock);
}

kset_init()函數用於將kset結構體初始化,和kobject初始化類似。

/**
 * kset_register - initialize and add a kset.
 * @k: kset.
 */
int kset_register(struct kset *k)
{
    int err;

    if (!k)
        return -EINVAL;

    kset_init(k);
    err = kobject_add_internal(&k->kobj);
    if (err)
        return err;
    kobject_uevent(&k->kobj, KOBJ_ADD);
    return 0;
}

kset_register()函數用來初始化並添加到kset,函數比較簡單,它負責將kset中的kobject添加到系統,並向用戶空間發布KOBJ_ADD消息,所以在調用之前,需要先設置好k->kobj.name、k->kobj.parent和k->kobj.kset這些成員。

/**
 * kset_unregister - remove a kset.
 * @k: kset.
 */
void kset_unregister(struct kset *k)
{
    if (!k)
        return;
    kobject_del(&k->kobj);
    kobject_put(&k->kobj);
}

kset_unregister()和kset_register()函數功能是相對的,用於移除kset,並減少引用計數。

/**
 * kset_find_obj - search for object in kset.
 * @kset: kset we're looking in.
 * @name: object's name.
 *
 * Lock kset via @kset->subsys, and iterate over @kset->list,
 * looking for a matching kobject. If matching object is found
 * take a reference and return the object.
 */
struct kobject *kset_find_obj(struct kset *kset, const char *name)
{
    struct kobject *k;
    struct kobject *ret = NULL;

    spin_lock(&kset->list_lock);

    list_for_each_entry(k, &kset->list, entry) {
        if (kobject_name(k) && !strcmp(kobject_name(k), name)) {
            ret = kobject_get_unless_zero(k);
            break;
        }
    }

    spin_unlock(&kset->list_lock);
    return ret;
}

kset_find_obj()函數功能為通過從kset的鏈表中尋找名為name的kobject,實現了鏈表的遍歷。

 

與kobject類似,kset也提供看一種kobj_type,名稱為kset_ktype,實現如下:

static void kset_release(struct kobject *kobj)
{
    struct kset *kset = container_of(kobj, struct kset, kobj);
    pr_debug("kobject: '%s' (%p): %s\n",
         kobject_name(kobj), kobj, __func__);
    kfree(kset);
}

void kset_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
{
    if (kobj->parent)
        kobject_get_ownership(kobj->parent, uid, gid);
}

static struct kobj_type kset_ktype = {
    .sysfs_ops    = &kobj_sysfs_ops,
    .release    = kset_release,
    .get_ownership    = kset_get_ownership,
};

/**
 * kset_create - create a struct kset dynamically
 *
 * @name: the name for the kset
 * @uevent_ops: a struct kset_uevent_ops for the kset
 * @parent_kobj: the parent kobject of this kset, if any.
 *
 * This function creates a kset structure dynamically.  This structure can
 * then be registered with the system and show up in sysfs with a call to
 * kset_register().  When you are finished with this structure, if
 * kset_register() has been called, call kset_unregister() and the
 * structure will be dynamically freed when it is no longer being used.
 *
 * If the kset was not able to be created, NULL will be returned.
 */
static struct kset *kset_create(const char *name,
                const struct kset_uevent_ops *uevent_ops,
                struct kobject *parent_kobj)
{
    struct kset *kset;
    int retval;

    kset = kzalloc(sizeof(*kset), GFP_KERNEL);
    if (!kset)
        return NULL;
    retval = kobject_set_name(&kset->kobj, "%s", name);
    if (retval) {
        kfree(kset);
        return NULL;
    }
    kset->uevent_ops = uevent_ops;
    kset->kobj.parent = parent_kobj;

    /*
     * The kobject of this kset will have a type of kset_ktype and belong to
     * no kset itself.  That way we can properly free it when it is
     * finished being used.
     */
    kset->kobj.ktype = &kset_ktype;
    kset->kobj.kset = NULL;

    return kset;
}

/**
 * kset_create_and_add - create a struct kset dynamically and add it to sysfs
 *
 * @name: the name for the kset
 * @uevent_ops: a struct kset_uevent_ops for the kset
 * @parent_kobj: the parent kobject of this kset, if any.
 *
 * This function creates a kset structure dynamically and registers it
 * with sysfs.  When you are finished with this structure, call
 * kset_unregister() and the structure will be dynamically freed when it
 * is no longer being used.
 *
 * If the kset was not able to be created, NULL will be returned.
 */
struct kset *kset_create_and_add(const char *name,
                 const struct kset_uevent_ops *uevent_ops,
                 struct kobject *parent_kobj)
{
    struct kset *kset;
    int error;

    kset = kset_create(name, uevent_ops, parent_kobj);
    if (!kset)
        return NULL;
    error = kset_register(kset);
    if (error) {
        kfree(kset);
        return NULL;
    }
    return kset;
}

kset_create()和kset_create_and_add()就是使用kset_type來快速創建kset的函數,當需要在sysfs中創建單純的目錄時,可以使用這兩個函數進行創建。

static inline struct kset *to_kset(struct kobject *kobj)
{
    return kobj ? container_of(kobj, struct kset, kobj) : NULL;
}

static inline struct kset *kset_get(struct kset *k)
{
    return k ? to_kset(kobject_get(&k->kobj)) : NULL;
}

static inline void kset_put(struct kset *k)
{
    kobject_put(&k->kobj);
}

static inline struct kobj_type *get_ktype(struct kobject *kobj)
{
    return kobj->ktype;
}

上面這些函數是在kobject.h文件里面的內聯函數,to_kset()函數通過kobj的指針獲取kset結構體的首地址,kset_get()和kset_put()為引用計數操作,get_ktype()函數用於獲取kobject的ktype類型。

 

4、 kobject的層次結構

內核用kobject結構將各個對象連接起來組成一個分層的結構體系,從而與模型化的子系統相匹配。kobject結構體中的parent指針成員、kset指針成員和鏈表list_head實現了kobject的層次結構,parent指針最重要的用途是在sysfs分層結構中定位對象,下圖是一個簡單的kobject、kset的分層結構圖:

 

5、小節

本文主要對kobject結構體以及相關的結構體以及Linux內核提供的相關API做了簡要介紹,kobject結構體和設備驅動模型和sysfs的實現密切相關,必須深刻理解。

 

參考:

https://blog.csdn.net/yuanmengliang/article/details/52700529

https://blog.csdn.net/qb_2008/article/details/6846779

https://www.cnblogs.com/xiaojiang1025/p/6193959.html

《LINUX設備驅動程序(第三版)》


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM