插值與擬合
原文鏈接:https://zhuanlan.zhihu.com/p/28149195
1.最小二乘擬合
實例1
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq ## 設置字符集,防止中文亂碼 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False plt.figure(figsize=(9,9)) x=np.linspace(0,10,1000) X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78]) Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05]) #計算以p為參數的直線和原始數據之間的誤差 def f(p): k, b = p return(Y-(k*X+b)) #leastsq使得f的輸出數組的平方和最小,參數初始值為[1,0] r = leastsq(f, [1,0]) k, b = r[0] print("k=",k,"b=",b) plt.scatter(X,Y, s=100, alpha=1.0, marker='o',label=u'數據點') y=k*x+b ax = plt.gca() ax.set_xlabel(..., fontsize=20) ax.set_ylabel(..., fontsize=20) #設置坐標軸標簽字體大小 plt.plot(x, y, color='r',linewidth=5, linestyle=":",markersize=20, label=u'擬合曲線') plt.legend(loc=0, numpoints=1) leg = plt.gca().get_legend() ltext = leg.get_texts() plt.setp(ltext, fontsize='xx-large') plt.xlabel(u'安培/A') plt.ylabel(u'伏特/V') plt.xlim(0, x.max() * 1.1) plt.ylim(0, y.max() * 1.1) plt.xticks(fontsize=20) plt.yticks(fontsize=20) #刻度字體大小 plt.legend(loc='upper left') plt.show()
k= 0.6134953491930442 b= 1.794092543259387
實例2
# -*- coding: utf-8 -*- #最小二乘擬合實例 import numpy as np from scipy.optimize import leastsq import pylab as pl ## 設置字符集,防止中文亂碼 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False def func(x, p): """ 數據擬合所用的函數: A*cos(2*pi*k*x + theta) """ A, k, theta = p return A*np.sin(k*x+theta) def residuals(p, y, x): """ 實驗數據x, y和擬合函數之間的差,p為擬合需要找到的系數 """ return y - func(x, p) x = np.linspace(0, 20, 100) A, k, theta = 10, 3, 6 # 真實數據的函數參數 y0 = func(x, [A, k, theta]) # 真實數據 y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪聲之后的實驗數據 p0 = [10, 0.2, 0] # 第一次猜測的函數擬合參數 # 調用leastsq進行數據擬合 # residuals為計算誤差的函數 # p0為擬合參數的初始值 # args為需要擬合的實驗數據 plsq = leastsq(residuals, p0, args=(y1, x)) print (u"真實參數:", [A, k, theta] ) print (u"擬合參數", plsq[0]) # 實驗數據擬合后的參數 pl.plot(x, y0, color='r',label=u"真實數據") pl.plot(x, y1, color='b',label=u"帶噪聲的實驗數據") pl.plot(x, func(x, plsq[0]), color='g', label=u"擬合數據") pl.legend() pl.show()
真實參數: [10, 3, 6]
擬合參數 [-1.16428658 0.24215786 -0.794681 ]
2.插值
實例1
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import numpy as np import pylab as pl from scipy import interpolate import matplotlib.pyplot as plt ## 設置字符集,防止中文亂碼 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False x = np.linspace(0, 2*np.pi+np.pi/4, 10) y = np.sin(x) x_new = np.linspace(0, 2*np.pi+np.pi/4, 100) f_linear = interpolate.interp1d(x, y) tck = interpolate.splrep(x, y) y_bspline = interpolate.splev(x_new, tck) plt.xlabel(u'安培/A') plt.ylabel(u'伏特/V') plt.plot(x, y, "o", label=u"原始數據") plt.plot(x_new, f_linear(x_new), label=u"線性插值") plt.plot(x_new, y_bspline, label=u"B-spline插值") pl.legend() pl.show()
實例2
# -*- coding: utf-8 -*- import numpy as np from scipy import interpolate import pylab as pl ## 設置字符集,防止中文亂碼 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False #創建數據點集並繪制 pl.figure(figsize=(12,9)) x = np.linspace(0, 10, 11) y = np.sin(x) ax=pl.plot() pl.plot(x,y,'ro') #建立插值數據點 xnew = np.linspace(0, 10, 101) for kind in ['nearest', 'zero','linear','quadratic']: #根據kind創建插值對象interp1d f = interpolate.interp1d(x, y, kind = kind) ynew = f(xnew)#計算插值結果 pl.plot(xnew, ynew, label = str(kind)) pl.xticks(fontsize=20) pl.yticks(fontsize=20) pl.legend(loc = 'lower right') pl.show()
B樣條曲線插值
一維數據的插值運算可以通過 interp1d()實現。
其調用形式為:
Interp1d可以計算x的取值范圍之內任意點的函數值,並返回新的數組。
interp1d(x, y, kind=‘linear’, …)
參數 x和y是一系列已知的數據點
參數kind是插值類型,可以是字符串或整數
B樣條曲線插值
Kind給出了B樣條曲線的階數:
‘
zero‘ ‘nearest’ :0階梯插值,相當於0階B樣條曲線
‘slinear’‘linear’ :線性插值,相當於1階B樣條曲線
‘quadratic’‘cubic’:2階和3階B樣條曲線,更高階的曲線可以直接使用整數值來指定
(1)#創建數據點集:
import numpy as np
x = np.linspace(0, 10, 11)
y = np.sin(x)
(2)#繪制數據點集:
import pylab as pl
pl.plot(x,y,'ro')
創建interp1d對象f、計算插值結果:
xnew = np.linspace(0, 10, 11)
from scipy import interpolate
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)
根據kind類型創建interp1d對象f、計算並繪制插值結果:
xnew = np.linspace(0, 10, 11)
for kind in ['nearest', 'zero','linear','quadratic']:
#根據kind創建插值對象interp1d
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)#計算插值結果
pl.plot(xnew, ynew, label = str(kind))#繪制插值結果
如果我們將代碼稍作修改增加一個5階插值
import numpy as np from scipy import interpolate import pylab as pl #創建數據點集並繪制 pl.figure(figsize=(12,9)) x = np.linspace(0, 10, 11) y = np.sin(x) ax=pl.plot() pl.plot(x,y,'ro') #建立插值數據點 xnew = np.linspace(0, 10, 101) for kind in ['nearest', 'zero','linear','quadratic',5]: #根據kind創建插值對象interp1d f = interpolate.interp1d(x, y, kind = kind) ynew = f(xnew)#計算插值結果 pl.plot(xnew, ynew, label = str(kind)) pl.xticks(fontsize=20) pl.yticks(fontsize=20) pl.legend(loc = 'lower right') pl.show() 運行得到

發現5階已經很接近正弦曲線,但是如果x值選取范圍較大,則會出現跳躍。
關於擬合與插值的數學基礎可參見霍開拓:擬合與插值的區別?
左邊插值,右邊擬合