使用深度學習模型時當然希望可以保存下訓練好的模型,需要的時候直接調用,不再重新訓練
一、保存模型到本地
以mnist數據集下的AutoEncoder 去噪為例。添加:
file_path="MNIST_data/weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5"
tensorboard = TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False) checkpoint = ModelCheckpoint(filepath=file_path,verbose=1,monitor='val_loss', save_weights_only=False,mode='auto' ,save_best_only=True,period=1)
autoencoder.fit(x_train_noisy, x_train, epochs=100, batch_size=128, shuffle=True, validation_data=(x_test_noisy, x_test), callbacks=[checkpoint,tensorboard])
這里的tensorboard和checkpoint分別是
1、啟用tensorboard可視化工具,新建終端使用tensorboard --logdir=/tmp/tb 命令
2、保存ModelCheckpoint到MNIST_data/文件夾下,這里的參數設置為觀察val_loss ,當有提升時保存一次模型,如下
二、從本地讀取模型
假設讀取模型后使用三個圖片做去噪實驗:(測試的圖片數量修改 pic_num )
import os import numpy as np from warnings import simplefilter simplefilter(action='ignore', category=FutureWarning) import matplotlib.pyplot as plt from keras.models import Model,Sequential,load_model from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img from keras.callbacks import TensorBoard , ModelCheckpoint print("_________________________keras start_____________________________") pic_num = 3 base_dir = 'MNIST_data' #基准目錄 train_dir = os.path.join(base_dir,'my_test') #train目錄 validation_dir="".join(train_dir) test_datagen = ImageDataGenerator(rescale= 1./255) validation_generator = test_datagen.flow_from_directory(validation_dir, target_size = (28,28), color_mode = "grayscale", batch_size = pic_num, class_mode = "categorical")#利用test_datagen.flow_from_directory(圖像地址,目標size,批量數目,標簽分類情況) for x_train,batch_labels in validation_generator: break x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) y_train = x_train # create model model = load_model('MNIST_data/my_model.hdf5') model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print("Created model and loaded weights from file") # estimate accuracy on whole dataset using loaded weights y_train=model.predict(x_train) n = pic_num for i in range(n): ax = plt.subplot(2, n, i+1) plt.imshow(x_train[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax = plt.subplot(2, n, i+1+n) plt.imshow(y_train[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show()
迭代67次效果:
參考:
https://keras-zh.readthedocs.io/getting-started/faq/#_3