HashMap底層原理


HashMap底層原理

 

背景:因為我不知道下一輩子還是否能遇見你 所以我今生才會那么努力把最好的給你。HashMap底層原理和源碼擼一遍面試不慌。

 

一、HashMap簡介

1. HashMap是用於存儲Key-Value鍵值對的集合;

2. HashMap根據鍵的hashCode值存儲數據,大多數情況下可以直接定位到它的值,So具有很快的訪問速度,但遍歷順序不確定;

3. HashMap中鍵key為null的記錄至多只允許一條,值value為null的記錄可以有多條

4. HashMap非線程安全,即任一時刻允許多個線程同時寫HashMap,可能會導致數據的不一致。

圖1. HashMap的繼承

二、HashMap底層存儲結構

從整體結構上看HashMap是由數組+鏈表+紅黑樹(JDK1.8后增加了紅黑樹部分)實現的。

圖2. HashMap整體存儲結構

數組:

      HashMap是一個用於存儲Key-Value鍵值對的集合,每一個鍵值對也叫做一個Entry;這些Entry分散的存儲在一個數組當中,該數組就是HashMap的主干。

圖3. HashMap存儲Entry的數組

鏈表:

      因為數組Table的長度是有限的,使用hash函數計算時可能會出現index沖突的情況,所以我們需要鏈表來解決沖突;數組Table的每一個元素不單純只是一個Entry對象,它還是一個鏈表的頭節點,每一個Entry對象通過Next指針指向下一個Entry節點;當新來的Entry映射到沖突數組位置時,只需要插入對應的鏈表位置即可。

圖4. HashMap鏈表

index沖突例子如下:

      比如調用 hashMap.put("China", 0) ,插入一個Key為“China"的元素;這時候我們需要利用一個哈希函數來確定Entry的具體插入位置(index):通過index = Hash("China"),假定最后計算出的index是2,那么Entry的插入結果如下:

圖5. index沖突-1

但是,因為HashMap的長度是有限的,當插入的Entry越來越多時,再完美的Hash函數也難免會出現index沖突的情況。比如下面這樣:

圖6. index沖突-2

      經過hash函數計算發現即將插入的Entry的index值也為2,這樣就會與之前插入的Key為“China”的Entry起沖突;這時就可以用鏈表來解決沖突,當新來的Entry映射到沖突的數組位置時,只需要插入到對應的鏈表即可;此外,新來的Entry節點插入鏈表時使用的是“頭插法”,即會插在鏈表的頭部,因為HashMap的發明者認為后插入的Entry被查找的概率更大。

圖7. index沖突-3

紅黑樹:

當鏈表長度超過閾值(8)時,會將鏈表轉換為紅黑樹,使HashMap的性能得到進一步提升。

圖8. HashMap紅黑樹

HashMap底層存儲結構源碼:

Node<K,V>類用來實現數組及鏈表的數據結構:

 1    /** 數組及鏈表的數據結構
 2  * Basic hash bin node, used for most entries. (See below for  3  * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)  4      */
 5     static class Node<K,V> implements Map.Entry<K,V> {  6         final int hash;  //保存節點的hash值
 7         final K key;  //保存節點的key值
 8         V value;  //保存節點的value值  9        //next是指向鏈表結構下當前節點的next節點,紅黑樹TreeNode節點中也用到next
10         Node<K,V> next; 11 
12         Node(int hash, K key, V value, Node<K,V> next) { 13             this.hash = hash; 14             this.key = key; 15             this.value = value; 16             this.next = next; 17  } 18 
19         public final K getKey()        { return key; } 20         public final V getValue()      { return value; } 21         public final String toString() { return key + "=" + value; } 22 
23         public final int hashCode() { 24             return Objects.hashCode(key) ^ Objects.hashCode(value); 25  } 26 
27         public final V setValue(V newValue) { 28             V oldValue = value; 29             value = newValue; 30             return oldValue; 31  } 32 
33         public final boolean equals(Object o) { 34             if (o == this) 35                 return true; 36             if (o instanceof Map.Entry) { 37                 Map.Entry<?,?> e = (Map.Entry<?,?>)o; 38                 if (Objects.equals(key, e.getKey()) &&
39  Objects.equals(value, e.getValue())) 40                     return true; 41  } 42             return false; 43  } 44     }

TreeNode<K,V>用來實現紅黑樹相關的存儲結構:

 1    /** 繼承LinkedHashMap.Entry<K,V>,紅黑樹相關存儲結構
 2  * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn  3  * extends Node) so can be used as extension of either regular or  4  * linked node.  5      */
 6     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {  7         TreeNode<K,V> parent;  //存儲當前節點的父節點
 8         TreeNode<K,V> left;  //存儲當前節點的左孩子
 9         TreeNode<K,V> right;  //存儲當前節點的右孩子
10         TreeNode<K,V> prev;    //存儲當前節點的前一個節點
11         boolean red;  //存儲當前節點的顏色(紅、黑)
12         TreeNode(int hash, K key, V val, Node<K,V> next) { 13             super(hash, key, val, next); 14  } 15 
16 public class LinkedHashMap<K,V>
17     extends HashMap<K,V>
18     implements Map<K,V>
19 { 20 
21     /**
22  * HashMap.Node subclass for normal LinkedHashMap entries. 23      */
24     static class Entry<K,V> extends HashMap.Node<K,V> { 25         Entry<K,V> before, after; 26         Entry(int hash, K key, V value, Node<K,V> next) { 27             super(hash, key, value, next); 28  } 29     }

三、HashMap各常量及成員變量的作用

HashMap相關常量:

 1     /** 創建HashMap時未指定初始容量情況下的默認容量  2  * The default initial capacity - MUST be a power of two.  3      */
 4     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 1 << 4 = 16
 5 
 6     /** HashMap的最大容量  7  * The maximum capacity, used if a higher value is implicitly specified  8  * by either of the constructors with arguments.  9  * MUST be a power of two <= 1<<30. 10      */
11     static final int MAXIMUM_CAPACITY = 1 << 30; // 1 << 30 = 1073741824 12 
13     /** HashMap默認的裝載因子,當HashMap中元素數量超過 容量*裝載因子 時,則進行resize()擴容操作 14  * The load factor used when none specified in constructor. 15      */
16     static final float DEFAULT_LOAD_FACTOR = 0.75f; 17 
18     /** 用來確定何時解決hash沖突的,鏈表轉為紅黑樹 19  * The bin count threshold for using a tree rather than list for a 20  * bin. Bins are converted to trees when adding an element to a 21  * bin with at least this many nodes. The value must be greater 22  * than 2 and should be at least 8 to mesh with assumptions in 23  * tree removal about conversion back to plain bins upon 24  * shrinkage. 25      */
26     static final int TREEIFY_THRESHOLD = 8; 27 
28     /** 用來確定何時解決hash沖突的,紅黑樹轉變為鏈表 29  * The bin count threshold for untreeifying a (split) bin during a 30  * resize operation. Should be less than TREEIFY_THRESHOLD, and at 31  * most 6 to mesh with shrinkage detection under removal. 32      */
33     static final int UNTREEIFY_THRESHOLD = 6; 34 
35     /** 當想要將解決hash沖突的鏈表轉變為紅黑樹時,需要判斷下此時數組的容量,若是由於數組容量太小(小於MIN_TREEIFY_CAPACITY)而導致hash沖突,則不進行鏈表轉為紅黑樹的操作,而是利用resize()函數對HashMap擴容 36  * The smallest table capacity for which bins may be treeified. 37  * (Otherwise the table is resized if too many nodes in a bin.) 38  * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts 39  * between resizing and treeification thresholds. 40      */
41     static final int MIN_TREEIFY_CAPACITY = 64;

HashMap相關成員變量:

 1 /* ---------------- Fields -------------- */
 2 
 3     /** 保存Node<K,V>節點的數組  4  * The table, initialized on first use, and resized as  5  * necessary. When allocated, length is always a power of two.  6  * (We also tolerate length zero in some operations to allow  7  * bootstrapping mechanics that are currently not needed.)  8      */
 9     transient Node<K,V>[] table; 10 
11     /** 由HashMap中Node<K,V>節點構成的set 12  * Holds cached entrySet(). Note that AbstractMap fields are used 13  * for keySet() and values(). 14      */
15     transient Set<Map.Entry<K,V>> entrySet; 16 
17     /** 記錄HashMap當前存儲的元素的數量 18  * The number of key-value mappings contained in this map. 19      */
20     transient int size; 21 
22     /** 記錄HashMap發生結構性變化的次數(value值的覆蓋不屬於結構性變化) 23  * The number of times this HashMap has been structurally modified 24  * Structural modifications are those that change the number of mappings in 25  * the HashMap or otherwise modify its internal structure (e.g., 26  * rehash). This field is used to make iterators on Collection-views of 27  * the HashMap fail-fast. (See ConcurrentModificationException). 28      */
29     transient int modCount; 30 
31     /** threshold的值應等於table.length*loadFactor,size超過這個值時會進行resize()擴容 32  * The next size value at which to resize (capacity * load factor). 33  * 34  * @serial
35      */
36     // (The javadoc description is true upon serialization. 37     // Additionally, if the table array has not been allocated, this 38     // field holds the initial array capacity, or zero signifying 39     // DEFAULT_INITIAL_CAPACITY.)
40     int threshold; 41 
42     /** 記錄HashMap的裝載因子 43  * The load factor for the hash table. 44  * 45  * @serial
46      */
47     final float loadFactor; 48 
49     /* ---------------- Public operations -------------- */

四、HashMap的四種構造方法

      HashMap提供了四個構造方法,四個構造方法中方法1、2、3都沒有進行數組的初始化操作,即使調用了構造方法此時存放HaspMap的數組中元素的table表長度依舊為0 ;在第四個構造方法中調用了putMapEntries()方法完成了table的初始化操作,並將m中的元素添加到HashMap中。

HashMap四個構造方法:

 1 /* ---------------- Public operations -------------- */
 2 
 3     /** 構造方法1,指定初始容量及裝載因子  4  * Constructs an empty <tt>HashMap</tt> with the specified initial  5  * capacity and load factor.  6  *  7  * @param initialCapacity the initial capacity  8  * @param loadFactor the load factor  9  * @throws IllegalArgumentException if the initial capacity is negative  10  * or the load factor is nonpositive  11      */
 12     public HashMap(int initialCapacity, float loadFactor) {  13         if (initialCapacity < 0)  14             throw new IllegalArgumentException("Illegal initial capacity: " +
 15  initialCapacity);  16         if (initialCapacity > MAXIMUM_CAPACITY)  17             initialCapacity = MAXIMUM_CAPACITY;  18         if (loadFactor <= 0 || Float.isNaN(loadFactor))  19             throw new IllegalArgumentException("Illegal load factor: " +
 20  loadFactor);  21         this.loadFactor = loadFactor;  22         //tableSize(initialCapacity)方法返回的值最接近initialCapacity的2的冪,若設定初始容量為9,則HashMap的實際容量為16  23         //另外,通過HashMap(int initialCapacity, float loadFactor)該方法創建的HashMap初始容量的值存在threshold中
 24         this.threshold = tableSizeFor(initialCapacity);  25  }  26 
 27 
 28      /** tableSizeFor(initialCapacity)方法返回的值是最接近initialCapacity的2的冪次方  29  * Returns a power of two size for the given target capacity.  30      */
 31     static final int tableSizeFor(int cap) {  32         int n = cap - 1;  33         n |= n >>> 1;  34         n |= n >>> 2;  35         n |= n >>> 4;  36         n |= n >>> 8;  37         n |= n >>> 16;  38         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;  39  }  40 
 41     /** 構造方法2,僅指定初始容量,裝載因子的值采用默認的0.75  42  * Constructs an empty <tt>HashMap</tt> with the specified initial  43  * capacity and the default load factor (0.75).  44  *  45  * @param initialCapacity the initial capacity.  46  * @throws IllegalArgumentException if the initial capacity is negative.  47      */
 48     public HashMap(int initialCapacity) {  49         this(initialCapacity, DEFAULT_LOAD_FACTOR);  50  }  51 
 52     /** 構造方法3,所有參數均采用默認值  53  * Constructs an empty <tt>HashMap</tt> with the default initial capacity  54  * (16) and the default load factor (0.75).  55      */
 56     public HashMap() {  57         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 58  }  59 
 60     /** 構造方法4,指定集合轉為HashMap  61  * Constructs a new <tt>HashMap</tt> with the same mappings as the  62  * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with  63  * default load factor (0.75) and an initial capacity sufficient to  64  * hold the mappings in the specified <tt>Map</tt>.  65  *  66  * @param m the map whose mappings are to be placed in this map  67  * @throws NullPointerException if the specified map is null  68      */
 69     public HashMap(Map<? extends K, ? extends V> m) {  70         this.loadFactor = DEFAULT_LOAD_FACTOR;  71         putMapEntries(m, false);  72  }  73 
 74      /** 把Map<? extends K, ? extends V> m中的元素插入HashMap  75  * Implements Map.putAll and Map constructor  76  *  77  * @param m the map  78  * @param evict false when initially constructing this map, else  79  * true (relayed to method afterNodeInsertion).  80      */
 81     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {  82         int s = m.size();  83         if (s > 0) {  84             //在創建HashMap時調用putMapEntries()函數,則table一定為空
 85             if (table == null) { // pre-size  86                 //根據待插入map的size計算出要創建的HashMap的容量
 87                 float ft = ((float)s / loadFactor) + 1.0F;  88                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 89                          (int)ft : MAXIMUM_CAPACITY);  90                 //把要創建的HashMap的容量存在threshold中
 91                 if (t > threshold)  92                     threshold = tableSizeFor(t);  93  }  94             //如果待插入map的size大於threshold,則進行resize()
 95             else if (s > threshold)  96  resize();  97             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {  98                 K key = e.getKey();  99                 V value = e.getValue(); 100                 //最終實際上同樣也是調用了putVal()函數進行元素的插入
101                 putVal(hash(key), key, value, false, evict); 102  } 103  } 104     }

五、HashMap的put方法

      假如調用hashMap.put("apple",0)方法,將會在HashMap的table數組中插入一個Key為“apple”的元素;這時需要通過hash()函數來確定該Entry的具體插入位置,而hash()方法內部會調用hashCode()函數得到“apple”的hashCode;然后putVal()方法經過一定計算得到最終的插入位置index,最后將這個Entry插入到table的index位置。

put函數:

 1    /** 指定key和value,向HashMap中插入節點  2  * Associates the specified value with the specified key in this map.  3  * If the map previously contained a mapping for the key, the old  4  * value is replaced.  5  *  6  * @param key key with which the specified value is to be associated  7  * @param value value to be associated with the specified key  8  * @return the previous value associated with <tt>key</tt>, or  9  * <tt>null</tt> if there was no mapping for <tt>key</tt>. 10  * (A <tt>null</tt> return can also indicate that the map 11  * previously associated <tt>null</tt> with <tt>key</tt>.) 12      */
13     public V put(K key, V value) { 14         //插入節點,hash值的計算調用hash(key)函數,實際調用putVal()插入節點
15         return putVal(hash(key), key, value, false, true); 16  } 17 
18     /** key的hash值計算是通過hashCode()的高16位異或低16位實現的:h = key.hashCode()) ^ (h >>> 16),使用位運算替代了取模運算,在table的長度比較小的情況下,也能保證hashcode的高位參與到地址映射的計算當中,同時不會有太大的開銷。 19  * Computes key.hashCode() and spreads (XORs) higher bits of hash 20  * to lower. Because the table uses power-of-two masking, sets of 21  * hashes that vary only in bits above the current mask will 22  * always collide. (Among known examples are sets of Float keys 23  * holding consecutive whole numbers in small tables.) So we 24  * apply a transform that spreads the impact of higher bits 25  * downward. There is a tradeoff between speed, utility, and 26  * quality of bit-spreading. Because many common sets of hashes 27  * are already reasonably distributed (so don't benefit from 28  * spreading), and because we use trees to handle large sets of 29  * collisions in bins, we just XOR some shifted bits in the 30  * cheapest possible way to reduce systematic lossage, as well as 31  * to incorporate impact of the highest bits that would otherwise 32  * never be used in index calculations because of table bounds. 33      */
34     static final int hash(Object key) { 35         int h; 36         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 37     }

putVal()函數:

 1    /** 實際將元素插入HashMap中的方法  2  * Implements Map.put and related methods  3  *  4  * @param hash hash for key  5  * @param key the key  6  * @param value the value to put  7  * @param onlyIfAbsent if true, don't change existing value  8  * @param evict if false, the table is in creation mode.  9  * @return previous value, or null if none 10      */
11     final V putVal(int hash, K key, V value, boolean onlyIfAbsent, 12                    boolean evict) { 13         Node<K,V>[] tab; Node<K,V> p; int n, i; 14         //判斷table是否已初始化,否則進行初始化table操作
15         if ((tab = table) == null || (n = tab.length) == 0) 16             n = (tab = resize()).length; 17         //根據hash值確定節點在數組中的插入的位置,即計算索引存儲的位置,若該位置無元素則直接進行插入
18         if ((p = tab[i = (n - 1) & hash]) == null) 19             tab[i] = newNode(hash, key, value, null); 20         else { 21             //節點若已經存在元素,即待插入位置存在元素
22             Node<K,V> e; K k; 23             //對比已經存在的元素與待插入元素的hash值和key值,執行賦值操作
24             if (p.hash == hash &&
25                 ((k = p.key) == key || (key != null && key.equals(k)))) 26                 e = p; 27             //判斷該元素是否為紅黑樹節點
28             else if (p instanceof TreeNode) 29                 //紅黑樹節點則調用putTreeVal()函數進行插入
30                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); 31             else { 32                 //若該元素是鏈表,且為鏈表頭節點,則從此節點開始向后尋找合適的插入位置
33                 for (int binCount = 0; ; ++binCount) { 34                     if ((e = p.next) == null) { 35                         //找到插入位置后,新建節點插入
36                         p.next = newNode(hash, key, value, null); 37                         //若鏈表上節點超過TREEIFY_THRESHOLD - 1,即鏈表長度為8,將鏈表轉變為紅黑樹
38                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
39  treeifyBin(tab, hash); 40                         break; 41  } 42                     //若待插入元素在HashMap中已存在,key存在了則直接覆蓋
43                     if (e.hash == hash &&
44                         ((k = e.key) == key || (key != null && key.equals(k)))) 45                         break; 46                     p = e; 47  } 48  } 49             if (e != null) { // existing mapping for key
50                 V oldValue = e.value; 51                 if (!onlyIfAbsent || oldValue == null) 52                     e.value = value; 53  afterNodeAccess(e); 54                 //若存在key節點,則返回舊的key值
55                 return oldValue; 56  } 57  } 58         //記錄修改次數
59         ++modCount; 60         //判斷是否需要擴容
61         if (++size > threshold) 62  resize(); 63         //空操作
64  afterNodeInsertion(evict); 65         //若不存在key節點,則返回null
66         return null; 67     }

 鏈表轉紅黑樹的putTreeVal()函數:

 1        /** 鏈表轉紅黑樹
 2  * Tree version of putVal.  3          */
 4         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,  5                                        int h, K k, V v) {  6             Class<?> kc = null;  7             boolean searched = false;  8             TreeNode<K,V> root = (parent != null) ? root() : this;  9             //從根節點開始查找合適的插入位置
10             for (TreeNode<K,V> p = root;;) { 11                 int dir, ph; K pk; 12                 if ((ph = p.hash) > h) 13                     //若dir<0,則查找當前節點的左孩子
14                     dir = -1; 15                 else if (ph < h) 16                     //若dir>0,則查找當前節點的右孩子
17                     dir = 1; 18                 //hash值或是key值相同
19                 else if ((pk = p.key) == k || (k != null && k.equals(pk))) 20                     return p; 21                 //1.當前節點與待插入節點key不同,hash值相同 22                 //2.k是不可比較的,即k未實現comparable<K>接口,或者compareComparables(kc,k,pk)的返回值為0
23                 else if ((kc == null &&
24                           (kc = comparableClassFor(k)) == null) ||
25                          (dir = compareComparables(kc, k, pk)) == 0) { 26                     //在以當前節點為根節點的整個樹上搜索是否存在待插入節點(只搜索一次)
27                     if (!searched) { 28                         TreeNode<K,V> q, ch; 29                         searched = true; 30                         if (((ch = p.left) != null &&
31                              (q = ch.find(h, k, kc)) != null) ||
32                             ((ch = p.right) != null &&
33                              (q = ch.find(h, k, kc)) != null)) 34                             //若搜索發現樹中存在待插入節點,則直接返回
35                             return q; 36  } 37                     //指定了一個k的比較方式 tieBreakOrder
38                     dir = tieBreakOrder(k, pk); 39  } 40 
41                 TreeNode<K,V> xp = p; 42                 if ((p = (dir <= 0) ? p.left : p.right) == null) { 43                     //找到了待插入位置,xp為待插入位置的父節點,TreeNode節點中既存在樹狀關系,又存在鏈式關系,而且還是雙端鏈表
44                     Node<K,V> xpn = xp.next; 45                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); 46                     if (dir <= 0) 47                         xp.left = x; 48                     else
49                         xp.right = x; 50                     xp.next = x; 51                     x.parent = x.prev = xp; 52                     if (xpn != null) 53                         ((TreeNode<K,V>)xpn).prev = x; 54                     //插入節點后進行二叉樹平衡操作
55  moveRootToFront(tab, balanceInsertion(root, x)); 56                     return null; 57  } 58  } 59  } 60 
61      /** 定義了一個k的比較方法 62  * Tie-breaking utility for ordering insertions when equal 63  * hashCodes and non-comparable. We don't require a total 64  * order, just a consistent insertion rule to maintain 65  * equivalence across rebalancings. Tie-breaking further than 66  * necessary simplifies testing a bit. 67          */
68         static int tieBreakOrder(Object a, Object b) { 69             int d; 70             if (a == null || b == null ||
71                 (d = a.getClass().getName(). 72                  compareTo(b.getClass().getName())) == 0) 73                 //System.identityHashCode()實際是比較對象a,b的內存地址
74                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
75                      -1 : 1); 76             return d; 77         }

圖9. hashCode計算得到table索引的過程

圖10. put添加方法執行過程

上圖的HashMap的put方法執行流程圖,可以總結為如下主要步驟:

1. 判斷數組table是否為null,若為null則執行resize()擴容操作。

2. 根據鍵key的值計算hash值得到插入的數組索引i,若table[i] == nulll,則直接新建節點插入,進入步驟6;若table[i]非null,則繼續執行下一步。

3. 判斷table[i]的首個元素key是否和當前key相同(hashCode和equals均相同),若相同則直接覆蓋value,進入步驟6,反之繼續執行下一步。

4. 判斷table[i]是否為treeNode,若是紅黑樹,則直接在樹中插入鍵值對並進入步驟6,反之繼續執行下一步。

5. 遍歷table[i],判斷鏈表長度是否大於8,若>8,則把鏈表轉換為紅黑樹,在紅黑樹中執行插入操作;若<8,則進行鏈表的插入操作;遍歷過程中若發現key已存在則會直接覆蓋該key的value值。

6. 插入成功后,判斷實際存在的鍵值對數量size是否超過了最大容量threshold,若超過則進行擴容。

六、HashMap的get方法

get()和getNode()函數:

 1    /**
 2  * Returns the value to which the specified key is mapped,  3  * or {@code null} if this map contains no mapping for the key.  4  *  5  * <p>More formally, if this map contains a mapping from a key  6  * {@code k} to a value {@code v} such that {@code (key==null ? k==null :  7  * key.equals(k))}, then this method returns {@code v}; otherwise  8  * it returns {@code null}. (There can be at most one such mapping.)  9  * 10  * <p>A return value of {@code null} does not <i>necessarily</i> 11  * indicate that the map contains no mapping for the key; it's also 12  * possible that the map explicitly maps the key to {@code null}. 13  * The {@link #containsKey containsKey} operation may be used to 14  * distinguish these two cases. 15  * 16  * @see #put(Object, Object) 17      */
18     public V get(Object key) { 19         Node<K,V> e; 20         //實際上是根據輸入節點的hash值和key值,利用getNode方法進行查找
21         return (e = getNode(hash(key), key)) == null ? null : e.value; 22  } 23 
24     /**
25  * Implements Map.get and related methods 26  * 27  * @param hash hash for key 28  * @param key the key 29  * @return the node, or null if none 30      */
31     final Node<K,V> getNode(int hash, Object key) { 32         Node<K,V>[] tab; Node<K,V> first, e; int n; K k; 33         if ((tab = table) != null && (n = tab.length) > 0 &&
34             (first = tab[(n - 1) & hash]) != null) { 35             if (first.hash == hash && // always check first node
36                 ((k = first.key) == key || (key != null && key.equals(k)))) 37                 return first; 38             if ((e = first.next) != null) { 39                 if (first instanceof TreeNode) 40                     //若定位到的節點是TreeNode節點,則在樹中進行查找
41                     return ((TreeNode<K,V>)first).getTreeNode(hash, key); 42                 do { 43                      //反之,在鏈表中查找
44                     if (e.hash == hash &&
45                         ((k = e.key) == key || (key != null && key.equals(k)))) 46                         return e; 47                 } while ((e = e.next) != null); 48  } 49  } 50         return null; 51     }

getTreeNode()和find()函數:

 1        /** 從根節點開始,調用find()方法進行查找  2  * Calls find for root node.  3          */
 4         final TreeNode<K,V> getTreeNode(int h, Object k) {  5             return ((parent != null) ? root() : this).find(h, k, null);  6  }  7 
 8        /**
 9  * Finds the node starting at root p with the given hash and key. 10  * The kc argument caches comparableClassFor(key) upon first use 11  * comparing keys. 12          */
13         final TreeNode<K,V> find(int h, Object k, Class<?> kc) { 14             TreeNode<K,V> p = this; 15             do { 16                 int ph, dir; K pk; 17                 TreeNode<K,V> pl = p.left, pr = p.right, q; 18                 //首先進行hash值的比較,若不同則令當前節點變為它的左孩子or右孩子
19                 if ((ph = p.hash) > h) 20                     p = pl; 21                 else if (ph < h) 22                     p = pr; 23                 //若hash值相同,進行key值的比較
24                 else if ((pk = p.key) == k || (k != null && k.equals(pk))) 25                     return p; 26                 else if (pl == null) 27                     p = pr; 28                 else if (pr == null) 29                     p = pl; 30                 //執行到這里,說明了hash值是相同的,key值不同 31                //若k是可比較的並且k.compareTo(pk)的返回結果不為0,則進入下面的else if
32                 else if ((kc != null ||
33                           (kc = comparableClassFor(k)) != null) &&
34                          (dir = compareComparables(kc, k, pk)) != 0) 35                     p = (dir < 0) ? pl : pr; 36                 //若k是不可比較的,或者k.compareTo(pk)返回結果為0,則在整棵樹中查找,先找右子樹,沒找到則再到左子樹找
37                 else if ((q = pr.find(h, k, kc)) != null) 38                     return q; 39                 else
40                     p = pl; 41             } while (p != null); 42             return null; 43         }

圖11. get方法執行流程

上圖為HashMap get方法執行流程圖,HashMap的查找操作相對簡單,可以總結為如下主要步驟:

1. 首先定位到鍵所在的數組的下標,並獲取對應節點n。

2. 判斷n是否為null,若n為null,則返回null並結束;反之,繼續下一步。

3. 判斷n的key和要查找的key是否相同(key相同指的是hashCode和equals均相同),若相同則返回n並結束;反之,繼續下一步。

4. 判斷是否有后續節點m,若沒有則結束;反之,繼續下一步。

5. 判斷m是否為紅黑樹,若為紅黑樹則遍歷紅黑樹,在遍歷過程中如果存在某一個節點的key與要找的key相同,則返回該節點;反之,返回null;若非紅黑樹則繼續下一步。

6. 遍歷鏈表,若存在某一個節點的key與要找的key相同,則返回該節點;反之,返回null。

七、HashMap的remove方法

HashMap根據鍵值刪除指定節點,其刪除操作其實是一個“查找+刪除”的過程,核心的方法是removeNode。

remove和removeNode()函數:

 1     /**
 2  * Removes the mapping for the specified key from this map if present.  3  *  4  * @param key key whose mapping is to be removed from the map  5  * @return the previous value associated with <tt>key</tt>, or  6  * <tt>null</tt> if there was no mapping for <tt>key</tt>.  7  * (A <tt>null</tt> return can also indicate that the map  8  * previously associated <tt>null</tt> with <tt>key</tt>.)  9      */
10     public V remove(Object key) { 11         Node<K,V> e; 12         //計算出hash值,調用removeNode()方法根據鍵值刪除指定節點
13         return (e = removeNode(hash(key), key, null, false, true)) == null ?
14             null : e.value; 15  } 16 
17     /**
18  * Implements Map.remove and related methods 19  * 20  * @param hash hash for key 21  * @param key the key 22  * @param value the value to match if matchValue, else ignored 23  * @param matchValue if true only remove if value is equal 24  * @param movable if false do not move other nodes while removing 25  * @return the node, or null if none 26      */
27     final Node<K,V> removeNode(int hash, Object key, Object value, 28                                boolean matchValue, boolean movable) { 29         Node<K,V>[] tab; Node<K,V> p; int n, index; 30         //判斷表是否為空,以及p節點根據鍵的hash值對應到數組的索引初是否有節點 31        //刪除操作需要保證在表不為空的情況下進行,並且p節點根據鍵的hash值對應到數組的索引在該索引下必須要有節點;若為null,則說明此鍵所對應的節點不存在HashMap中
32         if ((tab = table) != null && (n = tab.length) > 0 &&
33             (p = tab[index = (n - 1) & hash]) != null) { 34             Node<K,V> node = null, e; K k; V v; 35             //若是需要刪除的節點就是該頭節點,則讓node引用指向它;否則什么待刪除的結點在當前p所指向的頭節點的鏈表或紅黑樹中,則需要遍歷查找
36             if (p.hash == hash &&
37                 ((k = p.key) == key || (key != null && key.equals(k)))) 38                 node = p; 39             else if ((e = p.next) != null) { 40                 //若頭節點是紅黑樹節點,則調用紅黑樹本身的遍歷方法getTreeNode,獲取待刪除的結點
41                 if (p instanceof TreeNode) 42                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key); 43                 else { 44                     //否則就是普通鏈表,則使用do while循環遍歷查找待刪除結點
45                     do { 46                         if (e.hash == hash &&
47                             ((k = e.key) == key ||
48                              (key != null && key.equals(k)))) { 49                             node = e; 50                             break; 51  } 52                         p = e; 53                     } while ((e = e.next) != null); 54  } 55  } 56             if (node != null && (!matchValue || (v = node.value) == value ||
57                                  (value != null && value.equals(v)))) { 58                 //若是紅黑樹結點的刪除,則直接調用紅黑樹的removeTreeNode方法進行刪除
59                 if (node instanceof TreeNode) 60                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); 61                 //若待刪除結點是一個頭節點,則用它的next節點頂替它作為頭節點存放在table[index]中,以此達到刪除的目的
62                 else if (node == p) 63                     tab[index] = node.next; 64                 //若待刪除結點為普通鏈表中的一個結點,則用該節點的前一個節點直接跳過該待刪除節點,指向它的next結點(鏈表通過next獲取下一個結點信息)
65                 else
66                     p.next = node.next; 67                 //記錄修改次數
68                 ++modCount; 69                 --size; 70  afterNodeRemoval(node); 71                 //若removeNode方法刪除成功則返回被刪除的結點
72                 return node; 73  } 74  } 75          //若沒有刪除成功則返回null
76         return null; 77     }

八、HashMap的擴容機制

      擴容是為了防止HashMap中的元素個數超過了閥值,從而影響性能所服務的。而數組是無法自動擴容的,HashMap的擴容是申請一個容量為原數組大小兩倍的新數組,然后遍歷舊數組,重新計算每個元素的索引位置,並復制到新數組中;又因為HashMap的哈希桶數組大小總是為2的冪次方,So重新計算后的索引位置要么在原來位置不變,要么就是“原位置+舊數組長度”。

      其中,threshold和loadFactor兩個屬性決定着是否擴容。threshold=Length*loadFactor,Length表示table數組的長度(默認值為16),loadFactor為負載因子(默認值為0.75);閥值threshold表示當table數組中存儲的元素個數超過該閥值時,即需要擴容;如數組默認長度為16,負載因子默認0.75,此時threshold=16*0.75=12,即當table數組中存儲的元素個數超過12個時,table數組就該進行擴容了。

      HashMap的擴容使用新的數組代替舊數組,然后將舊數組中的元素重新計算索引位置並放到新數組中,對舊數組中的元素如何重新映射到新數組中?由於HashMap擴容時使用的是2的冪次方擴展的,即數組長度擴大為原來的2倍、4倍、8倍、16倍...,因此在擴容時(Length-1)這部分就相當於在高位新增一個或多個1位(bit);如下圖12,HashMap擴大為原數組的兩倍為例。

圖12. HashMap的哈希算法數組擴容

      如上圖12所示,(a)為擴容前,key1和key2兩個key確定索引的位置;(b)為擴容后,key1和key2兩個key確定索引的位置;hash1和hash2分別是key1與key2對應的哈希“與高位運算”結果。

(a)中數組的高位bit為“1111”,1*2+ 1*2+ 1*22 + 1*23 = 15,而 n-1 =15,所以擴容前table的長度n為16;

(b)中n擴大為原來的兩倍,其數組大小的高位bit為“1 1111”,1*2+ 1*2+ 1*22 + 1*2+ 1*24 = 15+16=31,而 n-1=31,所以擴容后table的長度n為32;

(a)中的n為16,(b)中擴大兩倍n為32,相當於(n-1)這部分的高位多了一個1,然后和原hash碼作與操作,最后元素在新數組中映射的位置要么不變,要么向后移動16個位置,如下圖13所示。

圖13. HashMap中數組擴容兩倍后位置的變化

HashMap中數組擴容兩倍后位置的變化
KEY hash 原數組高位bit 原下標 新數組高位bit 新下標
key1 0 0101 1111 0 0101 1 1111 0 0101 = 1*20+0*21+1*22+0*23+0*24= 5
key2 1 0101 1111 0 0101 1 1111 1 0101 = 1*2+ 0*2+ 1*22 + 0*23+0*24= 5+16

 

      因此,我們在擴充HashMap,復制數組元素及確定索引位置時不需要重新計算hash值,只需要判斷原來的hash值新增的那個bit是1,還是0;若為0,則索引未改變;若為1,則索引變為“原索引+oldCap”;如圖14,HashMap中數組從16擴容為32的resize圖。

圖14. HashMap中數組16擴容至32

這樣設計有如下幾點好處:

1. 省去了重新計算hash值的時間(由於位運算直接對內存數據進行操作,不需要轉成十進制,因此處理速度非常快),只需判斷新增的一位是0或1;

2. 由於新增的1位可以認為是隨機的0或1,因此擴容過程中會均勻的把之前有沖突的節點分散到新的位置(bucket槽),並且位置的先后順序不會顛倒;

3. JDK1.7中擴容時,舊鏈表遷移到新鏈表的時候,若出現在新鏈表的數組索引位置相同情況,則鏈表元素會倒置,但從圖14中看出JKD1.8的擴容並不會顛倒相同索引的鏈表元素。

HashMap擴容resize函數:

 1    /**
 2  * Initializes or doubles table size. If null, allocates in  3  * accord with initial capacity target held in field threshold.  4  * Otherwise, because we are using power-of-two expansion, the  5  * elements from each bin must either stay at same index, or move  6  * with a power of two offset in the new table.  7  *  8  * @return the table  9      */
 10     final Node<K,V>[] resize() {  11         Node<K,V>[] oldTab = table;  12         int oldCap = (oldTab == null) ? 0 : oldTab.length;  13         int oldThr = threshold;  14         int newCap, newThr = 0;  15         //當哈希桶不為空時,擴容走該支路A
 16         if (oldCap > 0) {  17              //若容量超過最大值,則無法進行擴容,需擴大閥值
 18             if (oldCap >= MAXIMUM_CAPACITY) {  19                 threshold = Integer.MAX_VALUE;  20                 return oldTab;  21  }  22             //若哈希桶擴容為原來的2倍,閥值也變為原來的兩倍
 23             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 24                      oldCap >= DEFAULT_INITIAL_CAPACITY)  25                 newThr = oldThr << 1; // double threshold
 26  }  27         //當調用非空函數時,走此分支B
 28         else if (oldThr > 0) // initial capacity was placed in threshold
 29             newCap = oldThr;  30         //調用空的構造函數時走此分支C,使用默認大小和閥值初始化哈希桶
 31         else {               // zero initial threshold signifies using defaults
 32             newCap = DEFAULT_INITIAL_CAPACITY;  33             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);  34  }  35         //int newCap, newThr = 0; 當走分支B時 newThr 為0
 36         if (newThr == 0) {  37             float ft = (float)newCap * loadFactor;  38              //走分支B調用的是非空函數,直接把容量大小賦值給閥值,需要計算新的閥值threshold
 39             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 40                       (int)ft : Integer.MAX_VALUE);  41  }  42         threshold = newThr;  43         @SuppressWarnings({"rawtypes","unchecked"})  44             //new一個新的哈希桶
 45             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];  46         table = newTab;  47          //擴容分支
 48         if (oldTab != null) {  49             //for循環把oldTab中的每個節點node,reHash操作並移動到新的數組newTab中
 50             for (int j = 0; j < oldCap; ++j) {  51                 Node<K,V> e;  52                 if ((e = oldTab[j]) != null) {  53                     oldTab[j] = null;  54                      //e.next == null,若是單個節點,即沒有后繼next節點,則直接在newTab在進行重定位
 55                     if (e.next == null)  56                         newTab[e.hash & (newCap - 1)] = e;  57                     //若節點為TreeNode,則需要進行紅黑樹的rehash操作
 58                     else if (e instanceof TreeNode)  59                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);  60                     //else則節點為鏈表,需進行鏈表的rehash操作,鏈表重組並保持原有順序
 61                     else { // preserve order
 62                         Node<K,V> loHead = null, loTail = null;  63                         Node<K,V> hiHead = null, hiTail = null;  64                         Node<K,V> next;  65                         do {  66                             next = e.next;  67                             //通過與位運算&,判斷rehash后節點位置是否發生改變  68                             //(e.hash & oldCap) == 0,則為原位置
 69                             if ((e.hash & oldCap) == 0) {  70                                 if (loTail == null)  71                                     //loHead 指向新的 hash 在原位置的頭節點
 72                                     loHead = e;  73                                 else
 74                                     //loTail 指向新的 hash 在原位置的尾節點
 75                                     loTail.next = e;  76                                 loTail = e;  77  }  78                             //else則rehash后節點位置變為:原位置+oldCap位置
 79                             else {  80                                 if (hiTail == null)  81                                     //hiHead 指向新的 hash 在原位置 + oldCap 位置的頭節點
 82                                     hiHead = e;  83                                 else
 84                                     // hiTail 指向新的 hash 在原位置 + oldCap 位置的尾節點
 85                                     hiTail.next = e;  86                                 hiTail = e;  87  }  88                         } while ((e = next) != null);  89                          //loTail非null,新的hash在原位置的頭節點放入哈希桶
 90                         if (loTail != null) {  91                             loTail.next = null;  92                             newTab[j] = loHead;  93  }  94                         //hiTail非null,新的hash在 原位置+oldCap位置 的頭節點放入哈希桶
 95                         if (hiTail != null) {  96                             hiTail.next = null;  97                             // rehash 后節點新的位置一定為原位置加上 oldCap
 98                             newTab[j + oldCap] = hiHead;  99  } 100  } 101  } 102  } 103  } 104         return newTab; 105     }

HashMap對紅黑樹進行rehash操作的split函數:

 1        /**
 2  * Splits nodes in a tree bin into lower and upper tree bins,  3  * or untreeifies if now too small. Called only from resize;  4  * see above discussion about split bits and indices.  5  *  6  * @param map the map  7  * @param tab the table for recording bin heads  8  * @param index the index of the table being split  9  * @param bit the bit of hash to split on 10          */
11         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) { 12             TreeNode<K,V> b = this; 13                  /**
14  * loHead 指向新的 hash 在原位置的頭節點 15  * loTail 指向新的 hash 在原位置的尾節點 16  * hiHead 指向新的 hash 在原位置 + oldCap 位置的頭節點 17  * hiTail 指向新的 hash 在原位置 + oldCap 位置的尾節點 18                     */
19             // Relink into lo and hi lists, preserving order
20             TreeNode<K,V> loHead = null, loTail = null; 21             TreeNode<K,V> hiHead = null, hiTail = null; 22             int lc = 0, hc = 0; 23             //由於TreeNode節點之間存在着雙端鏈表的關系,可利用鏈表關系進行rehash
24             for (TreeNode<K,V> e = b, next; e != null; e = next) { 25                 next = (TreeNode<K,V>)e.next; 26                 e.next = null; 27                  //原位置
28                 if ((e.hash & bit) == 0) { 29                     if ((e.prev = loTail) == null) 30                         loHead = e; 31                     else
32                         loTail.next = e; 33                     loTail = e; 34                     ++lc; 35  } 36                 //else則為原位置 + oldCap
37                 else { 38                     if ((e.prev = hiTail) == null) 39                         hiHead = e; 40                     else
41                         hiTail.next = e; 42                     hiTail = e; 43                     ++hc; 44  } 45  } 46             //rehash操作后,根據鏈表長度進行untreeify解除樹形化或treeify樹形化操作
47             if (loHead != null) { 48                 //當鏈表的節點個數小於等於解除樹形化閥值UNTREEIFY_THRESHOLD時,將紅黑樹轉為普通鏈表
49                 if (lc <= UNTREEIFY_THRESHOLD) 50                     tab[index] = loHead.untreeify(map); 51                 else { 52                     //新的hash在原位置的頭節點放入哈希桶
53                     tab[index] = loHead; 54                     if (hiHead != null) // (else is already treeified)
55  loHead.treeify(tab); 56  } 57  } 58             if (hiHead != null) { 59                 //當鏈表的節點個數小於等於解除樹形化閥值UNTREEIFY_THRESHOLD時,將紅黑樹轉為普通鏈表
60                 if (hc <= UNTREEIFY_THRESHOLD) 61                     tab[index + bit] = hiHead.untreeify(map); 62                 else { 63                     //新的hash在原位置 + oldCap位置的頭節點放入哈希桶
64                     tab[index + bit] = hiHead; 65                     if (loHead != null) 66  hiHead.treeify(tab); 67  } 68  } 69         }

九、總結

1. HashMap的哈希桶初始長度Length默認為16,負載因子默loadFactor認值為0.75,threshold閥值是HashMap能容納的最大數據量的Node節點個數,threshold=Length*loadFactor。

2. 當HashMap中存儲的元素個數超過了threshold閥值時,則會進行reseize擴容操作,擴容后的數組容量為之前的兩倍;但擴容是個特別消耗性能的操作,So當我們在使用HashMap的時候,可以估算下Map的大小,在初始化時指定一個大致的數值,這樣可以減少Map頻繁擴容的次數。

3. HashMap中實際存儲的鍵值對的數量通過size表示,table數組的長度為Length。

4. modCount是用來記錄HashMap內部結構發生變化的次數,put方法覆蓋HashMap中的某個key對應的value不屬於結構變化。

5. HashMap哈希桶的大小必須為2的冪次方。

6. JDK1.8引入紅黑樹操作,大幅度優化了HashMap的性能。

7. HashMap是非線程安全的,在並發環境中同時操作HashMap時最好使用線程安全的ConcurrentHashMap。

8. 因為我不知道下一輩子還是否能遇見你 所以我今生才會那么努力把最好的給你。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM