Snowy Smile
解題思路
先把y離散化,然后把點按照x的大小進行排序,我們枚舉每一種x作為上邊界,然后再枚舉其對應的每一種下邊界。按照這種順序插入點,這是一個壓維的操作,即在線段樹中的y位置加上其w,並利用線段樹來更新動態的最大子段和。
代碼如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 2005;
struct T{
ll x, y, w;
T(){}
T(ll x, ll y, ll w): x(x), y(y), w(w){}
}a[N];
bool cmp(const T& a, const T& b)
{
return a.x < b.x;
}
int b[N];
struct {
int l, r;
ll lx, rx, mx;
ll sum;
}tree[N << 2];
void build(int k, int l, int r)
{
tree[k].l = l;
tree[k].r = r;
tree[k].sum = tree[k].lx = tree[k].rx = tree[k].mx = 0;
if(l == r)
return;
int mid = (l + r) / 2;
build(2*k, l, mid);
build(2*k + 1, mid + 1, r);
}
void push_up(int k)
{
tree[k].sum = tree[2*k].sum + tree[2*k+1].sum;
tree[k].lx = max(tree[2*k].lx, tree[2*k].sum + tree[2*k+1].lx);
tree[k].rx = max(tree[2*k+1].rx, tree[2*k+1].sum + tree[2*k].rx);
tree[k].mx = max(max(tree[2*k].mx, tree[2*k+1].mx), tree[2*k].rx + tree[2*k+1].lx);
}
void insert(int k, int x, int w)
{
if(tree[k].l == tree[k].r){
tree[k].sum = tree[k].lx = tree[k].rx = tree[k].mx = tree[k].mx + w;
return;
}
int mid = (tree[k].l + tree[k].r) / 2;
if(x <= mid)
insert(2*k, x, w);
else
insert(2*k+1, x, w);
push_up(k);
}
inline ll query()
{
return tree[1].mx;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t --){
int n;
cin >> n;
for(int i = 1; i <= n; i ++){
ll x, y, w;
cin >> x >> y >> w;
a[i] = T(x, y, w);
b[i] = y;
}
sort(b + 1, b + n + 1);
int k = unique(b + 1, b + n + 1) - b - 1;
for(int i = 1; i <= n; i ++){
int y = lower_bound(b + 1, b + k + 1, a[i].y) - b;
a[i].y = y;
}
sort(a + 1, a + n + 1, cmp);
ll ans = 0;
for(int i = 1; i <= n; i ++){
if(i != 1 && a[i].x == a[i - 1].x)
continue;
build(1, 1, k);
for(int j = i; j <= n; j ++){
if(j != i && a[j].x != a[j - 1].x)
ans = max(ans, query());
insert(1, a[j].y, a[j].w);
}
ans = max(ans, query());
}
cout << ans << endl;
}
return 0;
}