轉載自:https://blog.csdn.net/sinat_29957455/article/details/79452141
一、有序特征的映射
import pandas as pd
if __name__ == "__main__":
\#定義衣服尺寸的映射關系
size_mapping = {"S":1,"M":2,"X":3,"XL":4}
\#定義一個DataFrame數據
data = pd.DataFrame([
["green","S",100],
["blue", "M", 110],
["red", "X", 120],
["black", "XL", 130]
])
\#設置列名
data.columns = ["color","size","price"]
\#對size列的類別數據進行映射
data["size"] = data["size"].map(size_mapping)
print(data)
二、類標的編碼
許多的機器學習算法都要求將類標換成整數值來進行處理。對於類標進行編碼與之前對於有序特征的映射有所不同,類標並不要求是有序的,對於特定的字符串類標賦予哪個整數值給它對於我們來說並不重要,所以在對於類標進行編碼的時候我們可以使用枚舉的方式從0開始設定類標。
import pandas as pd
import numpy as np
if __name__ == "__main__":
\# 定義一個DataFrame數據
data = pd.DataFrame([
["green", "S", 100,"label1"],
["blue", "M", 110,"label2"],
["red", "X", 120,"label3"],
["black", "XL", 130,"label4"]
])
\# 設置列名
data.columns = ["color", "size", "price","label"]
\#通過枚舉獲取類標與整數之間的映射關系
label_mapping = {label:idx for idx,label in enumerate(np.unique(data["label"]))}
print(label_mapping)
\#對label列進行映射
data["label"] = data["label"].map(label_mapping)
print(data)
通過下面的方法可以將整數類標還原為字符串
inv_label_mapping = {v:k for k,v in label_mapping.items()}
data["label"] = data["label"].map(inv_label_mapping)
print(data)
還可以通過sklearn的LabelEncoder類來實現類標的編碼
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
if __name__ == "__main__":
\# 定義一個DataFrame數據
data = pd.DataFrame([
["green", "S", 100,"label1"],
["blue", "M", 110,"label2"],
["red", "X", 120,"label3"],
["black", "XL", 130,"label4"]
])
\# 設置列名
data.columns = ["color", "size", "price","label"]
class_label = LabelEncoder()
data["label"] = class_label.fit_transform(data["label"].values)
print(data)
通過sklearn的inverse_transform方法可以將整數類標還原為原始的字符串
data["label"] = class_label.inverse_transform(data["label"])
print(data)
三、標稱特征上的獨熱編碼(one-hot encoding)
我們對上面衣服的顏色特征進行編碼,將顏色映射為{"green":0,"blue":1,"red":2,"black":3}。看起來這樣映射好像沒什么問題,真的沒有問題嗎?實則不然,我們這樣映射實際上給顏色強加了一個大小關系,即black>red>blue>green,實際上顏色是不存在這種關系的,很顯然結果肯定也不是最優的。這時,我們可以通過獨熱編碼(one-hot encoding)來解決這一類問題。獨熱編碼是通過創建一個新的虛擬特征,虛擬特征的每一列各代表標稱數據的一個值。例如,顏色一共有四個取值green、blue、red、black,獨熱編碼是通過四位二進制來表示,如果是green就表示為[1,0,0,0],對應的顏色是[green,blue,red,black],如果屬於哪一種顏色,則取值為1,否則為0。
使用sklearn的OneHotEncoder實現OneHot編碼
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
if __name__ == "__main__":
\# 定義一個DataFrame數據
data = pd.DataFrame([
["green", "S", 100, "label1"],
["blue", "M", 110, "label2"],
["red", "X", 120, "label3"],
["black", "XL", 130, "label4"]
])
\# 設置列名
data.columns = ["color", "size", "price", "label"]
X = data[["color", "price"]].values
\#通過類標編碼將顏色裝換成為整數
color_label = LabelEncoder()
X[:,0] = color_label.fit_transform(X[:,0])
\#設置顏色列使用oneHot編碼
one_hot = OneHotEncoder(categorical_features=[0])
print(one_hot.fit_transform(X).toarray())
注意:在使用OneHotEncoder進行OneHot編碼的時候,需要先將字符串轉換成為整數之后才能進行OneHot編碼,不然會報錯。
使用pandas來實現oneHot編碼
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
if __name__ == "__main__":
\# 定義一個DataFrame數據
data = pd.DataFrame([
["green", "S", 100, "label1"],
["blue", "M", 110, "label2"],
["red", "X", 120, "label3"],
["black", "XL", 130, "label4"]
])
\# 設置列名
data.columns = ["color", "size", "price", "label"]
X = data[["color", "price"]].values
\#pandas的get_dummies方法只對字符串列進行轉換,其他的列保持不變
print(pd.get_dummies(data[["color","price"]]))