Ubuntu系統---配置OpenCV
目錄
一、Ubuntu下配OpenCV
二、Ubuntu下配python-opencv
說明
上述一、二兩種方式,配置OpenCV還是有區別的。按個人已有知識的理解,“Ubuntu下配OpenCV”是在系統下裝了一個opencv,OpenCV的庫全;“Ubuntu下配python-opencv”是Python可以調用OpenCV的相關庫,OpenCV的庫不全,僅供python用。
正文
一、Ubuntu下配OpenCV
@https://blog.csdn.net/baidu_34971492/article/details/81665538
下載安裝包,進行一步步的安裝。
(1)在Opencv官網下載OpenCV3.4.2 Sources, 網址鏈接:https://opencv.org/releases.html,解壓。
(2)安裝cmake 和 依賴庫。
1.快速安裝cmake(也可以下載cmake安裝包進行安裝)
sudo apt-get install cmake #查看安裝的cmake版本:cmake --version #https://www.cnblogs.com/zhangjiansheng/p/7990028.html sudo apt-get update 2.依賴庫 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
(3)OpenCV3.4.2安裝。( 前提已安裝好cmake:sudo apt-get install cmake)
(3.1)創建build文件夾
mkdir build cd build
(3.2)cmake一下
#cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
#cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=~/opencv-3.4.1/build/installed -DWITH_CUDA=OFF .. (建立opencv-3.4.1/build/installed這幾個文件夾)
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/opencv3.4.2 ..
注意:如果已經在新的文件夾中編譯,但是還會出現之前的報錯,把cmakecache.txt刪了再編譯就可
不報錯,繼續。。。
(3.3)make一下
sudo make
sudo make install #執行完畢后OpenCV編譯過程就結束
(3.4)配置一些OpenCV的編譯環境
第一步:系統環境
1.首先將OpenCV的庫添加到路徑,從而可以讓系統找到:
sudo gedit /etc/ld.so.conf.d/opencv.conf
2.只需要在文件末尾添加:
/usr/local/lib
3.使得剛才的配置路徑生效:
sudo ldconfig
第二步:配置bash
1.打開bash.bashrc
sudo gedit /etc/bash.bashrc # sudo gedit ~/.bashrc
2.在最末尾添加
#@多版本OpenCV切換 https://blog.csdn.net/learning_tortosie/article/details/80594399
#export PKG_CONFIG_PATH=~/opencv-3.4.1/build/installed/lib/pkgconfig
#export LD_LIBRARY_PATH=~/opencv-3.4.1/build/installed/lib
export PKG_CONFIG_PATH=/usr/local/opencv3.4.2/lib/pkgconfig
export LD_LIBRARY_PATH=/usr/local/opencv3.4.2/lib
3.使配置生效
source /etc/bash.bashrc # source ~/.bashrc
(3.5)查詢OpenCV版本
pkg-config --modversion opencv # 如果輸出3.4.2,就表明配置成功。 如果前面沒報錯,輸出不是3.4.2,可能是配置沒生效,重啟電腦
也可以:@https://blog.csdn.net/cocoaqin/article/details/78376382
配置.bashrc
echo '/usr/local/lib' | sudo tee -a /etc/ld.so.conf.d/opencv.conf sudo ldconfig printf '# OpenCV\nPKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig\nexport PKG_CONFIG_PATH\n' >> ~/.bashrc source ~/.bashrc
(4)OpenCV3.4.2 測試安裝成功
測試1:
cd到opencv3.4.2/samples/cpp/example_cmake目錄下,這個目錄里官方已經給出了一個cmake的example,可以拿來測試下,按順序執行:
cmake .
make
./opencv_example
看到打開了攝像頭,在左上角有一個hello opencv ,即表示配置成功。
測試2:
@https://blog.csdn.net/cocoaqin/article/details/78376382 (還沒實踐)
過程記錄:
二、Ubuntu下配python-opencv
查看系統中的python版本,應該有Python2.x 和 Python3.x, 切換到python3.x下(想配 python3.x + OpenCV3.4.2)。
(1)若無pip,先安裝pip3,執行命令: sudo apt install python3-pip
(2)安裝依賴項,安裝libopencv-dev依賴包,運行命令: sudo apt install libopencv-dev
(3)安裝opencv-python庫
因為系統中已經安裝了python3和pip3,所以直接運行。
1. 直接安裝最新版:sudo pip3 install opencv-python
2. 或者可以進行指定版本安裝:pip3 install opencv_python==版本號
由於我這里是安裝opencv3.4.2,目前的最新版是3.4.2.16
所以直接執行:pip3 install opencv_python==3.4.2.16
(4) 成功之后,運行python3,進入編譯界面,導入庫查看版本print(cv2._version__)
python3
import cv2
cv2.__version__
備注: 同樣的方法,python2安裝,不好用,如下的好使: sudo python2 -m pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple u@u1604:~$ python Python 2.7.12 (default, Nov 12 2018, 14:36:49) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import cv2 >>> cv2.__version__ '4.1.0' >>>
u@u1604:~$ python3
Python 3.5.2 (default, Nov 12 2018, 13:43:14)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> cv2.__version__
'4.1.0'
>>>
附:《Ubuntu16.04下安裝opencv3.4.2》
給出了配置編譯opencv的四種方法,值得參考。
從下面四種選擇里面選一種進行編譯
- 配置編譯opencv (無NVIDIA CUDA版本)
- 配置編譯opencv (NVIDIA CUDA版本)
- 配置編譯opencv(NVIDIA Jetson TX2開發板)
- 簡化配置編譯
@https://blog.csdn.net/liuxiaodong400/article/details/81089058
--------------------------------------------------------------------------------
@https://blog.csdn.net/YuYunTan/article/details/85017065
@https://www.learnopencv.com/install-opencv-3-4-4-on-ubuntu-16-04/
你需要下載opencv3.4.1和opencv_contrib 3.4.1,然后對其解壓,這些基礎命令和操作則不概述。 將安裝包解壓到某一自己指定的目錄,記為{Opencv_Origin_Dir},目前我指定的目錄解壓到了,/home/tanqiwei/Documents/environment,所以{Opencv_Origin_Dir}對應就是/home/tanqiwei/Documents/environment/opencv-3.4.1 tanqiwei@ubuntu:~/Documents/environment$ pwd /home/tanqiwei/Documents/environment tanqiwei@ubuntu:~/Documents/environment$ ls opencv-3.4.1 opencv_contrib-3.4.1 安裝前的必備包 這些安裝不算十分完全,我只安裝自己夠用就成的某些包。 安裝一些必要的庫,還有cmake,git,g++。 sudo apt-get install build-essential sudo apt-get install cmake git g++ 安裝依賴包 安裝一些依賴包。 sudo apt-get install libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev sudo apt-get install checkinstall yasm libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libfaac-dev libmp3lame-dev libtheora-dev sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev libavresample-dev x264 v4l-utils 處理圖像所需的包 sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev 處理視頻所需包 sudo apt-get install libxvidcore-dev libx264-dev ffmpeg opencv功能優化 sudo apt-get install libatlas-base-dev gfortran 部分依賴包 sudo apt-get install libopencv-dev libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.4 libcholmod3.0.6 sudo apt-get install python-dev python-numpy 可選依賴 sudo apt-get install libprotobuf-dev protobuf-compiler sudo apt-get install libgoogle-glog-dev libgflags-dev sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen 編譯和安裝 進入OpenCV的源碼解壓目錄,{Opencv_Origin_Dir},我的是/home/tanqiwei/Documents/environment/opencv-3.4.1 我的opencv_contrib目錄和其同級,/home/tanqiwei/Documents/environment/opencv_contrib-3.4.1均在/home/tanqiwei/Documents/environment下然后在{Opencv_Origin_Dir}下運行 mkdir build cd build cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.4.1/modules -D PYTHON_EXECUTABLE=/usr/bin/python3.5 -D BUILD_EXAMPLES=ON .. 這里面過多參數都是屬於cmake的范疇,我這里不去描述,大概就是表示opencv應該安裝在哪里,擴展包在何處,需要開啟什么功能。 其實編譯過程中會發現,自行下載IPPICV,tiny-dnn等等。 IPPICV是個鏈接的免費子庫,如果想要禁用IPP加速,CMake的時候,加上-D WITH_IPP=OFF。 其實很多可能可選的從cmake的編譯輸出看來我們並沒有安裝,比如java,VTK等等,看下面這種類型的輸出就知道了,到時候你只需要對應安裝,然后修改CMake編譯命令,一般來說,opencv編譯過程中,自發也會去尋找這些東西。 -- Checking for module 'gstreamer-base-1.0' -- No package 'gstreamer-base-1.0' found -- Checking for module 'gstreamer-video-1.0' -- No package 'gstreamer-video-1.0' found -- Checking for module 'gstreamer-app-1.0' -- No package 'gstreamer-app-1.0' found -- Checking for module 'gstreamer-riff-1.0' -- No package 'gstreamer-riff-1.0' found -- Checking for module 'gstreamer-pbutils-1.0' -- No package 'gstreamer-pbutils-1.0' found -- Could NOT find JNI (missing: JAVA_AWT_LIBRARY JAVA_JVM_LIBRARY JAVA_INCLUDE_PATH JAVA_INCLUDE_PATH2 JAVA_AWT_INCLUDE_PATH) -- Could NOT find Pylint (missing: PYLINT_EXECUTABLE) -- Could NOT find Matlab (missing: MATLAB_MEX_SCRIPT MATLAB_INCLUDE_DIRS MATLAB_ROOT_DIR MATLAB_LIBRARIES MATLAB_LIBRARY_DIRS MATLAB_MEXEXT MATLAB_ARCH MATLAB_BIN) -- VTK is not found. Please set -DVTK_DIR in CMake to VTK build directory, or to VTK install subdirectory with VTKConfig.cmake file -- No preference for use of exported gflags CMake configuration set, and no hints for include/library directories provided. Defaulting to preferring an installed/exported gflags CMake configuration if available. -- Failed to find installed gflags CMake configuration, searching for gflags build directories exported with CMake. -- Failed to find gflags - Failed to find an installed/exported CMake configuration for gflags, will perform search for installed gflags components. -- CERES support is disabled. Ceres Solver for reconstruction API is required. -- Module opencv_ovis disabled because OGRE3D was not found -- Caffe: NO -- Protobuf: NO -- Checking for modules 'tesseract;lept' -- No package 'tesseract' found -- No package 'lept' found 最后會列出其編譯后的模塊列表。 -- OpenCV modules: -- To be built: aruco bgsegm bioinspired calib3d ccalib core cvv datasets dnn dnn_objdetect dpm face features2d flann freetype fuzzy hdf hfs highgui img_hash imgcodecs imgproc java_bindings_generator line_descriptor ml objdetect optflow phase_unwrapping photo plot python_bindings_generator reg rgbd saliency sfm shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab xfeatures2d ximgproc xobjdetect xphoto -- Disabled: js world -- Disabled by dependency: - -- Unavailable: cnn_3dobj cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev dnn_modern java matlab ovis python2 python3 viz -- Applications: tests perf_tests examples apps -- Documentation: NO -- Non-free algorithms: NO -- -- GUI: -- QT: YES (ver 5.5.1) -- QT OpenGL support: YES (Qt5::OpenGL 5.5.1) -- GTK+: NO -- OpenGL support: YES (/usr/lib/x86_64-linux-gnu/libGLU.so /usr/lib/x86_64-linux-gnu/libGL.so) -- VTK support: NO -- -- Media I/O: -- ZLib: /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.8) -- JPEG: /usr/lib/x86_64-linux-gnu/libjpeg.so (ver ) -- WEBP: build (ver encoder: 0x020e) -- PNG: /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.2.54) -- TIFF: /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 / 4.0.6) -- JPEG 2000: /usr/lib/x86_64-linux-gnu/libjasper.so (ver 1.900.1) -- OpenEXR: /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 2.2.0) -- -- Video I/O: -- DC1394: YES (ver 2.2.4) -- FFMPEG: YES -- avcodec: YES (ver 56.60.100) -- avformat: YES (ver 56.40.101) -- avutil: YES (ver 54.31.100) -- swscale: YES (ver 3.1.101) -- avresample: YES (ver 2.1.0) -- GStreamer: -- base: YES (ver 0.10.36) -- video: YES (ver 0.10.36) -- app: YES (ver 0.10.36) -- riff: YES (ver 0.10.36) -- pbutils: YES (ver 0.10.36) -- libv4l/libv4l2: NO -- v4l/v4l2: linux/videodev2.h -- gPhoto2: YES -- -- Parallel framework: TBB (ver 4.4 interface 9002) -- -- Trace: YES (with Intel ITT) -- -- Other third-party libraries: -- Intel IPP: 2017.0.3 [2017.0.3] -- at: /home/tanqiwei/Documents/environment/opencv-3.4.1/build/3rdparty/ippicv/ippicv_lnx -- Intel IPP IW: sources (2017.0.3) -- at: /home/tanqiwei/Documents/environment/opencv-3.4.1/build/3rdparty/ippicv/ippiw_lnx -- Lapack: YES (/usr/lib/liblapack.so /usr/lib/libcblas.so /usr/lib/libatlas.so) -- Eigen: YES (ver 3.2.92) -- Custom HAL: NO -- Protobuf: build (3.5.1) -- -- NVIDIA CUDA: NO -- -- OpenCL: YES (no extra features) -- Include path: /home/tanqiwei/Documents/environment/opencv-3.4.1/3rdparty/include/opencl/1.2 -- Link libraries: Dynamic load -- -- Python (for build): /usr/bin/python3 -- -- Java: -- ant: NO -- JNI: NO -- Java wrappers: NO -- Java tests: NO -- -- Matlab: NO -- -- Install to: /usr/local -- ----------------------------------------------------------------- -- -- Configuring done -- Generating done -- Build files have been written to: /home/tanqiwei/Documents/environment/opencv-3.4.1/build 我們可以發現,我們編譯已經成功,可以進行下一步,即make,但是值得注意的是,如果用多核make可能會報錯,為了保險起見,我還是原始的make命令,不加-j。 make 然后安裝。 sudo make install 最后最好開啟重啟一次,本人曾安裝過后,虛擬機重啟直接奔潰,無法進入系統內部,主要原因不太清楚,但是進入到了某種圖形模式,說是圖形模式損壞,之后只好從備份的快照中恢復,當然也有當時可能裝少了部分必要依賴項的可能性也說不定,建議安裝的機器內存要大一點,4GB為一般,6GB不錯,8GB很好。 運行測試 我們運行例子進行測試。你可以選擇任意例子,這里我選擇在我的github的opencv例子進行測試。 git clone https://github.com/tanqiwei/myOpencvStudyCode.git 大概幾M的內容,然后進入myOpencvStudyCode/LearningOpencv3/chapter2/example2.1 接着按下面命令 mkdir build cd build cmake .. make ./example2_1 ../data/test.jpg 你可以發現運行成功,故而咱們安裝順利。會發現顯示圖片窗口,按ESC鍵退出。 重啟后,發現還能開啟,說明虛擬機的16.04的系統安裝就成功了。 安裝過程命令總結 # 安裝及下載,該操作不解釋,都放在一個統一目錄下 # 我的是/home/tanqiwei/Documents/environment # 也就是在environment文件夾里有opencv-3.4.1和opencv_contrib-3.4.1兩個文件夾 # 安裝必備庫,cmake,git,g++ sudo apt-get install build-essential sudo apt-get install cmake git g++ # 安裝依賴項 sudo apt-get install libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev sudo apt-get install checkinstall yasm libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libfaac-dev libmp3lame-dev libtheora-dev sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev libavresample-dev x264 v4l-utils # 處理圖像所需的包 sudo apt-get install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev # 處理視頻所需的包 sudo apt-get install libxvidcore-dev libx264-dev ffmpeg # opencv功能優化 sudo apt-get install libatlas-base-dev gfortran # 某些依賴包 sudo apt-get install libopencv-dev libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.4 libcholmod3.0.6 sudo apt-get install python-dev python-numpy # 可選依賴項 sudo apt-get install libprotobuf-dev protobuf-compiler sudo apt-get install libgoogle-glog-dev libgflags-dev sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen # 進入opencv源碼目錄,注意opencv和opencv_contrib同級, # 即都屬於同一個主目錄下,我的目錄為/home/tanqiwei/Documents/environment, # 下面有opencv-3.4.1和opencv_contrib-3.4.1 mkdir build cd build cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.4.1/modules -D PYTHON_EXECUTABLE=/usr/bin/python3.5 -D BUILD_EXAMPLES=ON .. make