python深度學習之語音識別(CPU vs GPU)


訓練時間

在mbp的i5的cpu上訓練了3輪,花的時間如下

Epoch 1/3
 - 737s - loss: 0.1415 - val_loss: 0.0874
Epoch 2/3
 - 608s - loss: 0.0807 - val_loss: 0.0577
Epoch 3/3
 - 518s - loss: 0.0636 - val_loss: 0.0499

kaggle gpu telsa

Epoch 1/3
 - 40s - loss: 0.1544 - val_loss: 0.0956
Epoch 2/3
 - 38s - loss: 0.0871 - val_loss: 0.0665
Epoch 3/3
 - 38s - loss: 0.0690 - val_loss: 0.0478

對比gpu和cpu,時間相差了1,2個數量級

GeForce GTX 1080

Epoch 1/3
 - 47s - loss: 0.1349 - val_loss: 0.0890
Epoch 2/3
 - 45s - loss: 0.0787 - val_loss: 0.0670
Epoch 3/3
 - 43s - loss: 0.0625 - val_loss: 0.0466

在本地開發環境上的入門級顯卡1080上,訓練時間后和kaggle的環境相差不多。

Epoch=50

輸出前后幾輪的訓練時間

Epoch 1/50
 - 52s - loss: 0.1253 - val_loss: 0.0795
Epoch 2/50
 - 48s - loss: 0.0738 - val_loss: 0.0565
Epoch 3/50
 - 48s - loss: 0.0616 - val_loss: 0.0477
Epoch 4/50
 - 49s - loss: 0.0534 - val_loss: 0.0378
Epoch 5/50
 - 49s - loss: 0.0484 - val_loss: 0.0375
####################
Epoch 19/50
 - 50s - loss: 0.0270 - val_loss: 0.0249
Epoch 20/50
 - 50s - loss: 0.0257 - val_loss: 0.0241
Epoch 21/50
 - 48s - loss: 0.0256 - val_loss: 0.0255
Epoch 22/50
 - 50s - loss: 0.0247 - val_loss: 0.0255
Epoch 23/50
 - 48s - loss: 0.0246 - val_loss: 0.0219

最終結果

50輪次,大概花了一個多小時,kaggle上的准確率從0.66提升到0.74,后續再考慮優化其他超參數,繼續提升准確率


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM